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1 Overview  

 This report includes building blocks of a monocular visual odometry pipeline. The pipeline 

contains two main parts: initialization and continuous visual odometry operations. Following 

this pipeline, we analyzed the results on the three given datasets. At last, we demonstrated 

how do we collect our own dataset and adopted the pipeline onto it with some necessary 

steps. Meanwhile, we proposed some alternative methods to solve the cause of failure in 

the visual odometry process. Some visual outcomes of this pipeline can be seen here at our 

youtube channel: https://www.youtube.com/playlist?list=PLNDicWz0WmKx9FvRC04ntaGnnbVQeVNTH. 

 

2 Visual Odometry Pipeline 

2.1 Initialization Algorithm 

 In this part, two-view geometry is used to estimate the relative pose between two selected 

frames and triangulate a point cloud of landmarks. This step is described in Algorithm 1: 

Algorithm 1: Initialization    

1: Detect keypoints in the first frame by Harris detector 

2: found_next_keyframe ← false 

3: while ~found_next_keyframe do 

4:  Track keypoints in the candidate frame using KLT 

5: Estimate fundamental matrix by Matlab function estimateFundamentalMatrix  

6: Estimate the relative pose by decomposing Fundamental Matrix 

7: Triangulate Landmarks 

8: Landmark Sanity Check 

9: if keyframe_distance / average_depth > threshold then 

10:  found_next_keyframe ← true 

11: else 

12:  candidate frame ← candidate frame + 1 

13: end if 

14: end while 

 

2.1.1 Automatic Keyframes Selection 

 Instead of manually selecting two initialization keyframes, we automatically select 

keyframes according to the following formula: 

𝑘𝑒𝑦𝑓𝑟𝑎𝑚𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑒𝑝𝑡ℎ
> 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  

The threshold is set to 10% in our setting. This selection mechanism can make sure the 

baseline is large enough but also not too distant. Therefore, the bootstrapping step will be 

robust for different types of datasets. 

 

https://www.youtube.com/playlist?list=PLNDicWz0WmKx9FvRC04ntaGnnbVQeVNTH


2.1.2 Different Feature Detectors 

To detect keypoints from each frame, there are many options, e.g. Harris, BRISK, FAST, 

KAZE, ORB, MinEigen and other feature detectors. To decide which feature detector to use, 

we compared those feature detectors on the first 10% frames in each dataset and calculate 

the average reprojection errors. The below table and Figure 1 show numerical and visual 

comparison of how each feature detectors performed on the first 50 frames in parking dataset. 

Based on the results, we chose Harris detector in our pipeline for all datasets.  

Feature Detector Harris BRISK FAST KAZE ORB MinEigen 

Average Reprojection error 148.0096 257.9047 196.5903 339.6837 207.142 185.3214 

 

 

Figure 1: Different Feature detectors in frame 1 of Parking dataset  

 

2.1.3 Feature Detection with Non-Maxima Suppression 

Before feature detection, we enhanced the image intensify contrast by Matlab function 

histeq first. After the enhancement, the image is divided into several sub-regions. Then, we 

conducted Harris detector with a Non-Maxima Suppression on each sub-region. This process 

will ensure the keypoints are extracted evenly from the images and also representative.   

 



 
Figure 2: Comparison of Harris detector without (top) and with Non-Maxima Suppression(bottom) on Kitti dataset 

 

2.1.4 Track and Triangulate 

Once we got the keypoints from the previous frame, we can track them to the candidate 

frame using KLT algorithm. Then the MATLAB function estimateFundamentalMatrix is used 

to get Fundamental Matrix. The current camera pose can be estimated by decomposing it. 

With the tracked keypoints and camera pose, we can then triangulate 3D landmarks. 

2.1.5 Sanity Check of Landmarks 

In order to improve the quality and rationality of landmarks, a sanity check is conducted 

subsequently. The basic logic is: we only retain the points that are located in front of the 

camera lens and within a certain range. Without these geometric constraints, the subsequent 

process will produce a lot of uncertainty. 

 

2.2 Visual Odometry Continuous Operation 

In this part, new frame is added into pipeline. We associate tracked keypoints in the new 

frame to previously triangulated landmarks, estimate the current camera pose and triangulate 

new landmarks. The algorithm is described below: 

Algorithm 2: Visual Odometry Continuous Operation 

1: for current frame in all frames do 

2:  Track keypoints in the current frame using KLT 

3:  if number(keypoints) < threshold then 

4:  Extract SIFT features in the previous frame and current frame using SIFT toolbox 

5:  Match keypoints in these two frames using SIFT toolbox 

6:  Estimate fundamental matrix by Matlab function estimateFundamentalMatrix  

7:  Estimate the current camera pose by decomposing Fundamental Matrix 

8:  Triangulate Landmarks 

9: else 

10:  Estimate the current camera pose using P3P/DLT with pose refinement 

11: end if 

12: Triangulate new Landmarks from candidate points 

13: Landmark Validity Check 

14: Landmark Sanity Check 

15: Bundle Adjustment 

16:end for 

 

 



2.2.1 SIFT Matching 

 When the number of keypoints tracked by KLT is lower than a threshold (say 3 points) in 

the current frame, the pipeline will fail due to insufficient points for subsequent P3P algorithm. 

To alleviate this, we use SIFT to re-detect features and match the previous frame with the 

current frame. SIFT matching improves the robustness of the tracking pipeline particularly 

when the images sequence has illumination changes, big viewpoint variations and even for 

small motion blurring. In our indoor_ros_img dataset, SIFT matching has better results than 

KLT tracking (see Figure 3). SIFT algorithm is implemented by Matlab open source package: 

VLFeat toolbox from https://www.vlfeat.org/index.html. 

 

 

Figure 3: Comparison of KLT Tracking(top) and SIFT Matching(bottom) on indoor_ros_img dataset 

 

2.2.2 Pose Refinement 

When localizing a new frame based on the tracked keypoints and the current landmarks 

using P3P and subsequently DLT on the best inlier set, a small pose refinement is conducted. 

We have also tried using DLT only for localization but found it performed worse than P3P + 

DLT. A Comparison of these two methods is shown below in Figure 4. Therefore, in all of our 

experiments, we use P3P and then followed with DLT refining all inliers in the best P3P guess. 

After that, we minimize the reprojection error of all found inliers by optimizing the pose. Only 

very few iterations are necessary to reduce the reprojection error quiet a bit.   

https://www.vlfeat.org/index.html


 
Figure 4: Comparison of standard DLT (top) and P3P with DLT refinement(bottom) on Kitti dataset 

 

2.2.3 Validity Check of New Landmarks  

 Before adding newly triangulated landmarks, a validity check needs to be conducted. In 

addition to enforcing angle constraint, the reprojection error of the candidate landmarks 

should be constrained as well. Candidates with large reprojection error are consequently 

removed from the state. 

 

2.2.4 Sliding Window Bundle Adjustment 

 To refine the trajectory, we also implemented bundle adjustment. The implementation 

contains the pre-calculation of non-zero elements in jacobian matrix to accelerate the process. 

The code was adopted from exercise 9. However, to further reduce the computation overhead, 

we perodically used a sliding window to optimize the past frames inside of the window range.  

A comparison of global trajectory with and without bundle adjustment is shown below in 

Figure 5. As we can see that, after applying bundle adjustment, the global trajectory is closer 

to the ground truth trajectory. 

 



 
Figure 5: Comparison of trajectory without BA (top) and with BA (bottom) on parking dataset 

 

3 Results 

3.1 Primary Tunable Parameters 

The primary tunable parameters in our pipeline and their description are listed in the 

table below: 

Functionality Parameter Name Description 

Harris  rows Number of rows of the sub-region.  

 cols Number of columns of the sub-region.  

 radius Radius used for the Non-Maxima Suppression.  

 npoints Desired number of features per sub-region.  

 bins Bins count for image enhancement. 

Matching  maxBidirectionalError  Forward-backward error threshold for KLT. 

 block size  Size of neighborhood around each tracked point. 

Triangulation  sanity check factor  The upper limitation of sanity landmarks 

 angle threshold  Angle threshold for new landmarks.  

 reprojection error threshold Reprojection error threshold for new landmarks. 

BA  periode  BA period 

 window size  Window size for windowed BA.  

 



3.2 Result Analysis on Given Datasets (Parking, Kitti, Malaga) 

All experiments were run on a machine with the following specifications: i5-3733 MHz 

CPU, 8 cores, 16GB RAM and using a maximum of 121 threads. The Matlab version is 

R2020b. 

Our VO pipeline runs on the parking very nicely. The feature tracking and the localization 

work very reliably. The result on Kitti dataset looks quiet promising. The below Figure 6 shows 

an example frame in tracking process. The black line is the ground truth trajectory and the 

blue line is our result. A bit of scale drift is noticeable because we enable 3D plotting, while 

2D plotting result looks better. Malaga is the most difficult dataset to handle because of large 

scale drift and lack of ground truth. Nevertheless, our VO pipeline runs successfully on both 

of the dataset. 

 
Figure 6: An example frame on Kitti dataset: black line refers to ground truth, blue line refers to our result. 

 

4 Additional Features: Own Datasets 

Except for applying the pipeline onto the given datasets, we also recorded our own data 

set and tuned the program to make it work on the new dataset. We recorded our own dataset 

based on indoor environment. Unlike the outdoor environment, indoor environment is more 

challenging because it contains lots of textureless objects such as door, wall, floor and etc.  

 

4.1 Collect Data using ROS by Duckiebot    

Benefit from another course, Autonomous Mobility on Demand: From Car to Fleet, I 

had this semester, I can use a duckiebot to drive around my apartment and record images 

with its on board camera sensor. We wrote the ROS code to collect data and the scripts are 

also provided along with our project submission. The below Figure 7 shows how the duckiebot 

looks like. The benefit of using duckiebot to collect data is that we do not need to calibrate 

the camera; the default intrinsic matrix can be found from a yaml file of its system.   



 
Figure 7: Appearance of duckiebot. Left: side view. Right: front view 

However, the datasets collected by duckiebot are very challenging because of these 

issues: low image quality, motion blurring, image distortion and etc. Without image 

preprocessing, it is hard to adopt our pipeline onto this data set. Two sample images are 

shown in Figure 8. 

 
Figure 8: Image with motion blurring (left) and Image with distortion (right) 

 

4.2 Collect Data using iPhone8 Plus 

Then we decided to record the dataset by iPhone8 Plus. To get the instrinsic parameters 

of its camera. We applied Zhang's Camera Calibration Algorithm: taking 36 images of a 

checkerboard from different view points and utilize the Matlab calibration toolbox from 

http://www.vision.caltech.edu/bouguetj/calib_doc. The calibration process is shown in Fig. 9. 

 
Figure 9: Camera calibration 

  

The frame rate of iPhone8 Plus is 30 fps and we downsampled it to 3 fps. Some extracted 

sample images from this dataset are shown below. Except for the kitchen and bedroom, 

http://www.vision.caltech.edu/bouguetj/calib_doc


walls, doors, and aisles are almost without texture. Therefore, our visual odometry pipeline 

failed to map the whole trajectory. Some failed video snippets are also uploaded onto our 

Youtube channel. 

 
Figure 10: Sample images: kitchen, living room, bed room, aisle and etc. 

 

4.2.1 Alternative Remedies 

4.2.1.a SIFT 

 As discussed in section 2.2.1, SIFT matching can improve the robustness of the tracking 

pipeline; therefore, one of the remedies is we switch to SIFT matching when we lose all the 

tracked keypoints. However, SIFT is not as good at localizaton as Harris detector, the 

trajectory totally messed up in this dataset (see Figure 11). 

 

Figure 11: Alternative remedy: adding SIFT matching to VO pipeline.  

 

4.2.1.b Adding Visual aids and Increasing RANSAC Iterations 

 Another way to remedy this is adding visual aids at where the images are lacking textures. 

The visual adds we used include duckies and April tags. We placed these visual aids on the 

wall, aisles and corners (see Figure 12). Meanwhile, when the tracked keypoints are lower 



than a certain threshold (say 50), we increased the iteration numbers of RANSAC greatly. 

This will help us to get a better model and more inliers as keypoints.  

 

Figure 12: Adding visual aids 

By this remedy, our VO pipeline runs nicely on this indoor dataset. The full trajectory is 

close to the ground truth we drawn (see Figure 13). 

 
Figure 13: Left: Detecting April tag. Right: full trajectory mapping by our VO pipeline (blue) and ground truth trajectory (orange). 

 

4.2.2 Indoor Dataset: Stairs 

At last, we collected another indoor dataset: stairs and applied our VO pipeline. The full 

trajectory can be seen on Figure 14. 

 

Figure 14: Left: Detecting stairs. Right: full trajectory mapping by our VO pipeline (blue) and ground truth trajectory (orange). 


