
Mini-project: A visual odometry pipeline!

Contents

1 Preliminaries 1

1.1 Goal of the project . 1
1.2 Datasets . 1
1.3 Grading . 2

1.3.1 VO pose estimation quality . 2
1.3.2 Report quality . 2
1.3.3 Interesting additional feature . 3

1.4 Allowed matlab functions and external libraries . 3
1.5 Submission . 3

2 Overview of the proposed pipeline 4

2.1 Notation . 4
2.2 Overview . 4

3 Initialization 4

4 Continuous operation 4

4.1 Associating keypoints to existing landmarks . 5
4.2 Estimating the current pose . 5
4.3 Triangulating new landmarks . 6

5 General hints 7

1 Preliminaries

1.1 Goal of the project

The goal of this mini-project is to implement a simple, monocular, visual odometry (VO) pipeline
with the most essential features: initialization of 3D landmarks, keypoint tracking between two
frames, pose estimation using established 2D ↔ 3D correspondences, and triangulation of new land-
marks. During the exercises, you have seen some building blocks for this, now it is time to put
everything together!

1.2 Datasets

You are provided with three datasets to test your pipeline:

• The parking dataset (monocular)

• The KITTI1 dataset (stereo)

1http://www.cvlibs.net/datasets/kitti/eval_odometry.php

1

http://www.cvlibs.net/datasets/kitti/eval_odometry.php
石可心

石可心

石可心

石可心

石可心

石可心

石可心

Robotics and Perception Group,
University of Zurich. 1 PRELIMINARIES

Figure 1: Screenshot from our reference implementation. A YouTube playlist with example runs can
be found at http://tinyurl.com/ref-vo-vids .

• The Malaga2 dataset (stereo)

These can be downloaded from the teaching website.

1.3 Grading

Depending on the outcome of the mini-project, your grade will be increased by 0, 0.25 or 0.5: 0 if
the VO pipeline does not really work, 0.25 if it works and 0.5 if it works well and you add some
interesting additional feature.

You will be graded based on three things:

1.3.1 VO pose estimation quality

We will not do a quantitative evaluation of the quality of your VO pipeline, but a qualitative one.
It is important to us that your approach and problem-solving methodology is right, rather than
that you happen to stumble upon the right parameter tune for the provided datasets. Besides
submitting Matlab code that is easy to run, you have to record a screencast of your running pipeline.
Because it is very hard to avoid scale drift in the KITTI and Malaga datasets, it is not important
that you estimate the trajectory globally consistently, but it needs to be locally consistent for a
reasonable span of frames. See �Full trajectory� versus �Trajectory of last 20 frames� in the videos
(http://tinyurl.com/ref-vo-vids). Achieving a good global trajectory estimate can be considered an
interesting additional feature and can result in a grade increase of 0.5. The VO pipeline must be
fully monocular. As a consequence, you will of course not have to estimate the trajectory at the
correct absolute scale.

1.3.2 Report quality

The project report should summarize the overall work that you did. Write here how your impemen-
tation deviates or expands upon the recommendations written below, a succinct recount of how you
set and achieved milestones, and what interesting problems you encountered and how you solved
them. Also, quickly summarize your screencasts, commenting on the VO quality, highlighting in-
teresting things and explaining why maybe things are not the way you expected them to be. The
project report is also the place to describe the interesting additional feature and how it impacts the
quality of your VO pipeline. Note that having implemented an additional feature which degrades

2http://www.mrpt.org/MalagaUrbanDataset

2

http://tinyurl.com/ref-vo-vids
http://tinyurl.com/ref-vo-vids
http://www.mrpt.org/MalagaUrbanDataset
石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

Robotics and Perception Group,
University of Zurich. 1 PRELIMINARIES

the quality of your VO pipeline will be accepted and valued as long as i) the implemented feature is
properly motivated and described, and ii) an analysis showing the e�ect of your additional feature
is provided in the report. If the additional feature degrades the quality, provide both a screencast
with additional feature enabled and additional feature disabled.

1.3.3 Interesting additional feature

The following are examples of interesting additional features that could be accepted for a 0.5 grade
increase. You can propose any other feature as long as you can justify its merit, though in that case
we recommend that you verify with us whether a feature is acceptable �rst.

• Record your own dataset, and make your VO work with it. You can for example use your
smartphone's camera calibrated using the calibration toolbox 3.

• Propose and implement improvements to combat scale drift (without using stereo frames).

• Detailed, quantitative analyses that compare several approaches that can be applied to the
same component of the VO.

1.4 Allowed matlab functions and external libraries

You can use any Matlab function or library that achieves what has been done during any of the
exercise sessions. Use of any code that you did not write yourselves must be declared in the report.
We will not provide help for any function or library that is not part of the exercise solutions or this
project statement.

1.5 Submission

Your �nal submission is to be sent per e-mail to all TAs by the date speci�ed on the website. Please
make sure that you only send one submission per team. Links to any data that are not in the e-mail
attachment (incl. YouTube videos) need to be provided in the e-mail body. The submission needs
to comprise:

1. At least one screencast per dataset, showing the output of your VO on it. Use a similar layout
to Figure 1. Please use top-down 2D plots with an aspect ratio of 1 (set axis equal). Feel
free to provide more screencasts if you want to show something with them. To simplify data
transmission, we recommend uploading the screencasts to YouTube as listed or unlisted video,
but you can also send us the screencasts in any other way. YouTube videos that are not unlisted
will be added to a playlist that will be published on the website of our research group! For
Ubuntu, we recommend the screen capture program �kazam�. Please specify the last names of
the members of your group in the video �le name or YouTube video title.

2. When submitting code, always use relative paths instead of absolute paths. Write a Readme
�le specifying how to run it and the speci�cations of the machine on which you captured the
screencasts (maximum number of used threads, CPU frequency, RAM).

(a) Matlab code: Also mention the Matlab version you are using.

(b) Python code: Use Anaconda environments with Python 3.x. Submit your exported conda
environment (conda env export) together with your code.

(c) C/C++ code: Submit your code together with a functioning Make�le or CmakeLists �le.
Ensure that we can compile your software in Linux (Ubuntu 18.04). There must be a
detailed description of how to compile and run your code.

3. The report, see Section 1.3.2. An ideal report length is 5 pages excluding images or references,
if any. Be concise! The absolute maximum allowed is 10 pages excluding images or references.

Please do not provide raw images of custom datasets, if you submit any. Instead, describe them in
the report and only provide videos / screencasts.

3http://www.vision.caltech.edu/bouguetj/calib_doc/

3

http://www.vision.caltech.edu/bouguetj/calib_doc/
石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

Robotics and Perception Group,
University of Zurich. 4 CONTINUOUS OPERATION

2 Overview of the proposed pipeline

We �rst give a global overview of the proposed pipeline and the di�erent components involved. We
will then go into more details separately for each component.

2.1 Notation

We denote the set of all N frames in a dataset by: {Ii ≡ I(ti)}, i ∈ [1, N]. We denote the pose of
the camera at time ti by T i

WC .

2.2 Overview

The proposed pipeline is composed of two main components:

• An initialization module that extracts an initial set of 2D↔ 3D correspondences from the �rst
frames of the sequence and bootstraps the initial camera poses and landmarks.

• A continuous VO module that processes each frame Ii, estimates the current pose of the camera
T i
WC using the existing set of landmarks, and regularly triangulates new landmarks.

These two modules can be developed independently from one another. To test the continuous VO
module before the initialization module is completed, you can use the initial 2D ↔ 3D correspon-
dences provided in the exercise 7 (KITTI only).

3 Initialization

As you learned in lecture 6, one can use two-view geometry to estimate the relative pose between
two (su�ciently distant) frames, and triangulate a point cloud of landmarks.

You can proceed as follows:

1. Manually select two frames Ii0 and Ii1 at the beginning of the dataset.

2. Establish keypoint correspondences between these two frames using either patch matching
(exercise 3) or KLT (exercise 8, consider using the intermediate frames as well).

3. Estimate the relative pose between the frames and triangulate a point cloud of 3D landmarks
(exercise 6). Since the keypoint correspondences from the previous step will inevitably contain
some outliers, you will need to use RANSAC (some hints are given below) to �lter them out.

4. Initialize the continuous VO pipeline with the inlier keypoints and their associated landmarks.

Implementation hints:

• Make sure that the baseline between the two initialization frames is large (i.e. it is better
not to use two adjacent frames). Don't pick too distant frames either, otherwise it becomes
more di�cult to establish keypoint correspondence. For the KITTI dataset, we obtained good
results using frame 1 and frame 3.

• Although we have not strictly implemented the robust eight-point algorithm with RANSAC
during the exercises, you are allowed to use the Matlab function estimateFundamentalMatrix

which implements RANSAC.

4 Continuous operation

The continuous VO pipeline is the core component of the proposed VO implementation. Its respon-
sibilities are three-fold:

1. Associate keypoints in the current frame to previously triangulated landmarks.

2. Based on this, estimate the current camera pose.

4

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

Robotics and Perception Group,
University of Zurich. 4 CONTINUOUS OPERATION

Figure 2: Recommended data �ow / function design for continuous operation. This allows contin-
uous operation without the need to keep a global data structure with the full history of previous
observations

3. Regularly triangulate new landmarks using keypoints not associated to previously triangulated
landmarks.

We recommend to implement this in a Markov way using the data �ow / function design shown
in Figure 2. Formally, we de�ne as Si the state of the current frame, whose contents are speci�ed
further below. Then, we can de�ne a function for processing incoming frames, updating Si and
returning the pose T i

WC as follows:

[Si, T i
WC] = processFrame(Ii, Ii−1, Si−1) (1)

The key idea in this design is that the function inputs solely depend on the output of the previous
function call (and the new frame to process), i.e. it has the Markov property. That means we don't
need to build a data structure to maintain the history of the past frames, all that is needed is
contained in the state Si.

4.1 Associating keypoints to existing landmarks

This can be achieved like in exercise 7. Remember that there, the function ransacLocalization

took as input a query image, here Ii, a database image, here Ii−1, keypoints in the database image,
3D landmarks and the projection matrix. To �t this with the Markovian design, we add to Si the
keypoints in the i-th frame and the 3D landmarks associated to them. We denote the keypoints
with P i = {pik}, k ∈ [1,K], K being the keypoint count. The 3D landmarks are denoted with
Xi = {x(p)∀p ∈ P i}, meaning that x(pik) is the 3D landmark associated to pik.

We could now propagate Si according to exercise 7: Obtain P i from Harris corners and set
each landmark x(pia) = x(pi−1b) if the keypoint pia is matched to pi−1b , and if this matching is a
RANSAC inlier. However, we strongly recommend to use KLT tracking (see exercise 8): instead
of independently extracting P i and then matching them, keypoints can be tracked from Ii−1 to Ii.
This tends to have far fewer outlier associations than extracting keypoints from scratch and then
matching them. Furthermore, KLT can track the position of keypoints to sub-pixel accuracy, which
leads to more accurate pose estimations. However, KLT is still not perfect, and you might have
dynamic objects in the environment that would corrupt your pose estimate, so you still need the
RANSAC step.

Note that with that, not all pik ∈ P i might end up with an associated landmark. Those that do
not can be discarded: they will no longer be useful for Ii+1, Ii+2... As a consequence, P i will shrink
over time, unless we actively expand it, which is discussed in Section 4.3. For KLT we recommend
to use the Matlab class vision.PointTracker .

4.2 Estimating the current pose

Whether you obtain keypoint-to-landmark associations from patch matching or from KLT tracking,
you should jointly estimate pose and inliers using RANSAC, like in exercise 7. This will give you
T i
WC as an automatic by-product. In exercise 7, we had suggested to re�ne the P3P guess with a

DLT solution for all inliers, once the maximum set of inliers has been determined. However, while
developing the reference VO, we have found that the DLT solution is very often worse than the best
P3P guess.

To sum up, so far Si = (P i, Xi). We recommend to use for Si a Matlab struct and a 2×K and
3×K matrix for P i and Xi, respectively.

5

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

Robotics and Perception Group,
University of Zurich. 4 CONTINUOUS OPERATION

4.3 Triangulating new landmarks

So far, the pipeline can use the landmarks X1 from the initialization phase to localize subsequent
frames. However, once the camera has moved far enough, these landmarks might not be visible any
more. It is thus necessary to continuously create new landmarks. We propose an approach which
maintains the Markov property of our design and provides new landmarks asynchronously, as soon
as they can be triangulated reliably.

The idea is to initialize, for each new frame I, a set of candidate keypoints, and try to track
them through the next frames. Thus, at every point in time, we maintain a set of candidate keypoints
Ci = {cim},m ∈ [1,M] which have been tracked from previous frames. Let us de�ne Ψi+1

i (ci) as the
expression for the keypoint that is obtained from tracking ci from frame Ii to Ii+1. Then, we assume
that this operation can be inverted such that

Ψi
i+1(Ψi+1

i (ci)) = ci (2)

and de�ne the concatenation of tracking a keypoint across several frames as

Ψi+n
i (ci) = Ψi+n

i+n−1(Ψi+n−1
i+n−2(...Ψi+1

i (ci))),

which can also be inverted in the sense of (2). For every candidate keypoint ci ∈ Ci, we call the se-
quence Γ(cim) = {Ψi−Lm

i (cim),Ψi−Lm+1
i (cim), ..., cim} of tracked keypoints from frame Ii−Lm to frame

Ii a keypoint track of length Lm. As soon as a given keypoint track Γm meets some conditions (more
details on that below), we can reliably triangulate a new landmark from the keypoint observations
{Ψi−Lm

i (cim),Ψi−Lm+1
i (cim), ..., cim}, and the corresponding camera poses {T i−Lm

WC , T i−Lm+1
WC , ..., T i

WC}.
To simplify, we assume that a good enough triangulation for a given track can be achieved using only
the most recent observation cim, the �rst ever observation of the keypoint f(cim) := Ψi−Lm

i (cim), and

the corresponding poses T i
WC and τ(cim) := T i−Lm

WC . Hence, all we need to remember of the track for
a given keypoint cim is f(cim) and τ(cim).

We can add the following data to the state Si to re�ect this:

• The set of candidate keypoints Ci.

• A set containing the �rst observations of the track of each keypoint F i := {f(c)∀c ∈ Ci).

• The camera poses at the �rst observation of the keypoint T i := {τ(c)∀c ∈ Ci}.

With this, the state ends up being:

Si = (P i, Xi, Ci, F i, T i)

Ci, F i, T i can respectively be represented as matrices of shape 2×M, 2×M, 12×M (or 16×M
for the latter), where the transformation matrices τ ∈ T i are reshaped to vectors.

To propagate the new components of this state, we can track Ci = {Ψi
i−1(c)∀c ∈ Ci−1} in the

same way that {pik} are tracked in Section 4.1(we had not used this formalism there yet). Trivially,
F i is de�ned by f(c) = f(Ψi−1

i (c))∀c ∈ Ci, and T i analogously. If a candidate keypoint c ∈ Ci−1

fails to be tracked, it and (f(c), τ(c)) get discarded. As a consequence, Ci, F i, T i also shrink over
time. To mitigate this, you will need to continuously add newly detected keypoints c′ to Ci and set
the corresponding (f(c′), τ(c′)) = (c′, T i

WC). Consider making sure that these newly added keypoints
are not redundant with existing keypoints Ci and P i.

Finally, to obtain new 3D landmarks, you can attempt to triangulate a landmark x from each
(c, f(c), τ(c))∀c ∈ Ci similarly as the triangulation in exercise 5. However, you should require a
minimum baseline to make sure that the triangulations you get have good quality. We recommend
�nding a threshold for the angle α(c) between the bearing vectors corresponding to the keypoint
observations and camera poses, see Figure 3. If the angle exceeds that threshold, you can remove
(c, f(c), τ(c)) from Ci, F i, T i and append (c, x(c)) to P i, Xi.

6

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

石可心

Robotics and Perception Group,
University of Zurich. 5 GENERAL HINTS

Figure 3: Illustration of the angle α(c) which we recommend to de�ne the threshold on for deciding
whether or not to add a triangulated landmark and its keypoint to Xi, P i.

5 General hints

• In general, proceed step by step and verify your intermediate results visually. For example,
make sure that matching, localization and landmark propagation work properly before trian-
gulating new landmarks.

• You can save a lot of tedious coding and avoid bugs if you learn to master Matlab indexing4.
We recommend that you carefully read and try out all of that tutorial except the advanced
examples using linear indexing. Don't forget the logical indexing section.

4https://ch.mathworks.com/company/newsletters/articles/matrix-indexing-in-matlab.html

7

https://ch.mathworks.com/company/newsletters/articles/matrix-indexing-in-matlab.html

	Preliminaries
	Goal of the project
	Datasets
	Grading
	VO pose estimation quality
	Report quality
	Interesting additional feature

	Allowed matlab functions and external libraries
	Submission

	Overview of the proposed pipeline
	Notation
	Overview

	Initialization
	Continuous operation
	Associating keypoints to existing landmarks
	Estimating the current pose
	Triangulating new landmarks

	General hints

