
DLAD Project 2 Report

Kexin Shi, Zheng Shen

May 2021

1 Joint Architecture

1. Hyper-parameter tuning

(a) Optimizer and LR choice

We have tried different combinations of optimizer and learning rate shown in Fig.1. With a
small learning rate, the optimizer converges very slowly or might not be converged within the
given running epochs. As we increase learning rate, the training process might converge quickly,
however, it may also result in heavy oscillation. The best result is achieved by using learning rate
0.0001 with Adam optimizer and shown in Table.1.

(a) (b) (c)

(d) (e) (f)

Figure 1: SGD and Adam optimizer with different learning rates

Table 1: Optimizer & Learning Rate Summary

Optimizer Learning rate Grader Semseg Depth Run

Adam 0.0001 43.686 69.919 26.333 G38 0506–0951 optimizer lr adam 0.0001 b3ca6

(b) Batch size

We tried different batch sizes: 2, 4, 8. As Fig.2 shows, the curve corresponding to the batch size
of 8 is smoothier than the others. A larger batch size is preferred and performs better. The reason
could be that a larger batch size gives a more accurate and stable gradient with optimizing the
loss simultaneously over a larger set of images. However, the larger the batch size, the easier the
training will crash. To train more stably, we use batch size of 4 in the following tasks although
batch size of 8 gives better results currently. The best result is shown in Table 2.

Table 2: Batch Size Summary

Batch size Epoch Grader Semseg Depth Run

8 32 46.336 71.672 25.336 G38 0507–0800 optimizer bs 8 143b6

1



(a) (b) (c)

Figure 2: Comparison w.r.t. batch size

(c) Task weighting

We tried five different weight combinations shown in Fig.3 and Table 3. The grade is the highest
when the two tasks are assigned with equal weights. From Table 3, we can observe that when
we put more weights on semseg task and less weights on depth task, the performance of semseg
task increases while the performance of depth task decreases. This is the essential reason why
actually there is no significant difference between the overall scores. Considering the final grader
is a combination of semseg and depth tasks, we need to make a trade-off between different tasks.
Finally, we choose the equal weights for these two tasks to avoid one task overwhelms the other.

(a) (b) (c)

Figure 3: Comparison w.r.t. task weights

Table 3: Task Weight Summary

Semseg weight Depth weight Grader Semseg Depth Run

0.3 0.7 42.52 68.61 26.09 G38 0507–1334 s0.3 d0.7 69ab3
0.4 0.6 42.73 69.302 26.571 G38 0507–0226 s0.4 d0.6 cda67
0.5 0.5 43.686 69.919 26.333 G38 0517–0934 s0.5 d0.5 4c7ed
0.6 0.4 43.008 70.035 26.947 G38 0506–2230 s0.6 d0.4 09c0e
0.7 0.3 42.917 70.229 27.312 G38 0507–0848 s0.7 d0.3 cc4f0

2. Hardcoded hyperparameters

(a) Initialization with ImageNet weights

At the beginning, the encoder network is not initialized with weights. After switching on initial-
ization with ImageNet weights, the network will start from these pretrained weights instead of
random distribution. As Fig.4 shows, pretrained weights provide a better starting point comparing
to other runs, especially for semantic segmentation.

(b) Dilated convolutions

After setting dilation flags to (False, False, True), the fourth layer of encoder will be convolved
with dilation. From the Fig.4 and Table 4, the performance with dilated convolutions is improved
significantly based on the reason that the dilated convolutions provide exponential expansion of
the receptive field without any loss of resolution information. Meanwhile, it do not increase the
cost of computation and memory.

3. ASPP and skip connections

In the following tasks, each run is set with best hyperparameters we found before: Adam optimizer,
learning rate of 0.0001, batch size of 4, true flag for pretrained weights and (False, False, True) flags
for dilated convolutions.

2



(a) (b) (c)

Figure 4: Comparison w.r.t. hardcoded hyperparameters

Table 4: Hardcoded Hyperparameters Summary

Pretrained Dilated convolutions Grader Semseg Depth Run

Off Off 43.686 69.919 26.333 G38 0506–0951 optimizer lr adam 0.0001 b3ca6
On Off 47.258 72.780 25.522 G38 0507–1847 optimizer pretrained true b4857
Off On 53.911 76.845 26.233 G38 0509–2158 optimizer dialated true b7930
On On 57.438 79.176 21.738 G38 0519–2125 Hardcode all true 0d9de

For this part, code modification can be found in mtl/models/model parts.py. With ASPP and skip
connections, the performance is improved from 58.246 to 66.427.

Atrous Spatial Pyramid Pooling(ASPP) adopts parallel atrous convolution with different rates which
is used to extract multi-scale contextual information. Skip connections allow decoder to combine low-
level detailed information from DCNN with high-level semantic information from ASPP part. Before
concatenating the upsampled high-level features from ASPP with the corresponding low-level features
from the network backbone, we adopt one [1 × 1, 48] convolution on the low-level features for channel
reduction, since the corresponding low-level features usually contain a large number of channels, which
may outweigh the importance of the rich encoder features and make the training harder. After the
concatenation, we adopt two [3 × 3, 256] convolutions to refine the features followed by another simple
bilinear upsampling by a factor of 4, which is a simple yet effective decoder module.

(a) (b) (c)

Figure 5: Comparision of w/o and w/ ASPP and Skip Connection

Table 5: w/o and w/ ASPP and Skip Connection Summary

Grader Semseg Depth Run

w/o ASPP and Skip Connection 58.246 79.932 21.687 G38 0519–1723 base a2b40
w/ ASPP and Skip Connection 66.427 84.902 18.475 G38 0511–0853 v3p 93514

2 Branched Architecture

Code for this architecture can be found in mtl/models/model branched.py. Add a command line with
--model_name 'branched' in aws train.sh to use this model. Compared with the joint architecture, the
branched model improves the performance from 66.427 to 67.778.

This architecture still shares the same encoder to extract information from pictures, as semantic segmentation
and depth estimation are closely related. The main difference between it and joint architecture is they use
separated ASPP part and decoder. This branched design allows the model to train task-specific decoders,

3



which improves the score of each individual task. However, the model size and computation cost will increase
because the model have one more ASPP part and one more decoder.

(a) (b) (c)

Figure 6: Comparision of Joint Architecture and Branched Architecture

Table 6: Joint Architecture and Branched Architecture Summary

Grader Semseg Depth Run Model Size Duration

Joint Architecture 66.427 84.902 18.475 G38 0511–0853 v3p 93514 26716084 7h18m29s
Branched Architecture 67.778 85.246 17.468 G38 0511–1627 branched 9a854 32142356 9h1m37s

3 Task Distillation

Code for this architecture can be found in mtl/models/model distillation.py. Add a command line with
--model_name 'distillation' in aws train.sh to use this model. With task distillation, the performance
is improved from 67.778 to 69.268.

Similar to the branced architecture, we use different branches for different tasks. Furthermore, depth infor-
mation and semantic information are related with each other. Based on this assumption, the self-attention
part is designed for extracting useful information from other tasks. We also use additional decoders to restore
information from previous information about this task and distillated information from other tasks. What’s
worse, the model size and computation cost will increase a lot bacause the model has two more self-attention
parts and two more decoders parts for task distillation.

(a) (b) (c)

Figure 7: Comparision of w/o and w/ Task Distillation

Table 7: Branched Architecture w/o and w/ Task Distillation

Grader Semseg Depth Run Model Size Duration

w/o Task Distillation 67.778 85.246 17.468 G38 0511–1627 branched 9a854 32142356 9h1m37s
w Task Distillation 69.268 85.947 16.679 G38 0512–1052 distillation 250bb 36868136 14h34m2s

Finally, our results on the leaderboard are shown in Table 8:

Table 8: Final Results Summary

Grader Semseg Depth Run

Final Results 69.31 (22) 86.00 (21) 16.68 (20) G38 0512–1052 distillation adam 0.0001 250bb

4


