
Institute of Neuroinformatics

Kexin Shi & Yifei Liu

Efficient Spatio-Temporal
Processing of Event Data

Semester Thesis

Robotics and Perception Group
University of Zurich

Supervision

Mathias Gehrig
Nico Messikommer

Prof. Dr. Davide Scaramuzza

Feb 2022

Contents

Abstract iii

1 Introduction 1
1.1 Related Work . 1

2 Preprocessing 2
2.1 Downsample . 2
2.2 Voxelization . 3
2.3 Point Masking . 3

3 Comparisons of Different Methods 4
3.1 Dataset . 5
3.2 Classification . 5

3.2.1 Number of PVCNN blocks 5
3.2.2 Resolution . 5
3.2.3 MLP . 6
3.2.4 Concatenation . 6

3.3 Regression . 7
3.4 Model Comparison . 7

4 Explorations in PVCNN 9
4.1 MLP is not useful inside Point Voxel Block 9
4.2 Devoxelization is useful . 10

5 Another Attempt 12
5.1 Sparse convolution . 12

6 Discussion 13
6.1 Conclusion . 13
6.2 Outlook . 13

A Downsampling 15
A.1 Downsample Code . 15
A.2 The Effectiveness of Downsample Method 15
A.3 A new downsampling method . 15

i

Abstract

Event cameras are novel sensors that record a stream of asynchronous events
and offer advantages of high dynamic range and no motion blur. Events can be
converted to voxel grids and be processed by conventional neural networks, or
be directly processed by point-based model. Voxel-based approaches are used
more often and point-based models are less used, and we want to investigate why
this is the case and see the pros and cons between these two types of models.
By fairly comparing them within the same datasets and tasks, and within the
similar preprocessing methodology, we show that point-based methods can get
better performance than voxel-based models, but voxel-based models with 2D
convolution have a more reasonable trade-off between performance and speed.

iii

Chapter 1

Introduction

Event cameras are bio-inspired sensors that captures change of intensities asyn-
chronously and results in a stream of events. A stream of events are a sequence
of events and each event is represented as {x,y,t,p}, where x and y are pixel
location, p is polarity indicating the positive or negative change in intensity,
and t the timestamp.
There are many ways to process the event data. One can either directly process
the events with a point-based model, or convert the events to voxel grids and
process them using conventional neural networks (such as CNNs), or use other
methods such as spiking neural networks to process the events asynchronously.
The voxel-based method is used most often but point-based method is used
less, and we are investigating why this is the case and show the pros and cons
between these two types of models.

1.1 Related Work

The point-based models are not often used in processing events, they are more
often used in 3D scenarios like Lidars. PointNet [9] is a network that directly
processes points, and PointNet++ [10] recursively use PointNet to learn local
features from points. One network that uses point-based models on events is
EventNet [12], which achieved real-time processing. However, there are few
other work using point-based models on events.

Voxel-based models are used often in event data. One can convert points to
voxels by either accumulating the polarities or recording the timestamps [3].
After converting events to voxels, one can apply typical convolution networks on
the voxels. An off-the-shelf Resnet can be used to learn the voxel representation
and can get state-of-art performance [3]] [2].Voxel representations can also be
applied by recurrent neural networks, E-RAFT [5] applied recurrent networks
on the voxel grids and got high precision in predicting optical flow.

Another type of model uses both points and voxels. PVCNN [6] uses MLPs to
learn point features and convolutions to learn voxel features and combine them
in one network.

1

Chapter 2

Preprocessing

2.1 Downsample

Point models are often used in lidar scenarios which have thousands of points,
but events have hundreds of thousands or million points and requires more space
and time to process. Point-based models can not directly take as input all the
events because of memory issues, so downsampling is needed.

We first voxelize points to voxels by interpolating or summing the polarities in
each voxel, and then set a threshold to filter out voxels which has low summed
polarities. Then we extract points from voxels whose summed value is beyond
that threshold. The extraction is done by taking each valid voxel as a single
point, using its coordinate and summed polarity. Figure 2.1 visualizes the raw
events, randomly downsampled events, and the proposed downsampled events.
The randomly downsampled events are noisy, while the proposed downsampling
preserves a clear structure and removes noisy or isolated events.

Figure 2.1: Downsample effect. From left to right: raw events, random down-
sample, proposed downsample

There are three hyperparameters: summing or interpolating polarities, the num-
ber of bins and the threshold. We plan to discuss more in Appendix later.

2

Chapter 2. Preprocessing 3

2.2 Voxelization

Point-based models do not need voxelization. For voxel-based models, the input
need to have voxel representations. In the classification task, We pre-voxelize
the events in the data loading by interpolating the events in to pre-defined
temporal bins. In the optical flow regression task, we do not voxelize events
in data loading, but use the differentiable and gpu-efficient voxelization layer
introduced in PVCNN [6] to voxelize points, in the first layer of the network.

2.3 Point Masking

The voxel representation has a fixed size and can easily form batches for training.
But the number of points varies in different samples, and we can not directly
collect a batch from different samples. Inspired from machine translation, We
propose a method to pad the points to the maximum length of the samples in
the batch and generate a point mask for them. In the point mask , 1 indicates
original and valid points, while 0 indicates padded and unvalid points.

During training, we pass both the points and the point masks to Point-Voxel
Networks. For voxelization layers, we adapt the CUDA code so that the padded
points with mask 0 do not contribute to voxelization. Similarly during de-
voxelization, padded points are assigned nothing but 0 values. Moreover, we
multiply the output of Shared MLPs, i.e. 1D convolution, by the broadcasted
point masks, ensuring that the positions in the output feature corresponding to
padded points have zero values. These operation ensures that padded points
have zero features along the whole network, and stops gradient from passing
through these points.

The point masking is very important for Point-Voxel Networks. Figure 2.2 shows
our initial experiment using point masks. Before we use masks, we padded points
at random locations with fixed zero polarity, and the training was unstable and
hard to converge. After we used the point masks, the training was stablized and
the validation accuracy got improved. In the context of this project when we
mention Point-Voxel Networks, including PVCNN and PVUNET, we implicitly
mean we use this point masking strategy in preprocessing.

Figure 2.2: Effect of adding point masks. Light blue: before adding masks.
Deeper blue: after adding masks.

Chapter 3

Comparisons of Different
Methods

In this chapter, we will discuss the performances comparisons of different meth-
ods. We have four different types models to compare in total: Voxel-based
2D models (2D Resnet, 2D Unet [11]), Voxel-based 3D models (3D Resnet, 3D
Unet), Point-based 3D models (PointNet++ [10]), Point-Voxel CNN (PVCNN
[6]). We will compare their performances and speeds in classification and re-
gression tasks respectively.

A basic PVCNN block is shown in Fig. 3.1. It contains two parts. The upper
part represents voxel-based feature aggregation to extract coarse-grained fea-
tures, which includes voxelizing points into voxels, 3D convolutions on voxels,
and devoxelizing voxels into points again. The lower part represents point-
based feature transformation to extract fine-grained features, which only in-
cludes Multi-Layer Perception (MLP) on points directly.

Figure 3.1: A basic PVCNN block.

4

Chapter 3. Comparisons of Different Methods 5

3.1 Dataset

In this project we use two datasets for two tasks. We use N-Caltech101 [8] for
object classification task, and DSEC [4] for optical flow regression. We only
use events as input in both dataset. And we report model performance on
N-Caltech101 in 3.2, and report performance on DSEC in 3.3.

3.2 Classification

In classification task, a single basic Point-Voxel block is not representative
enough. So we stack multiple basic Point-Voxel blocks sequentially at differ-
ent resolutions to predict labels.

3.2.1 Number of PVCNN blocks

The first question we need to solve is to find how many blocks do we need per
resolution. We compared the results of PVCNN 1x (one PVCNN block per
resolution) and PVCNN 2x (two PVCNN blocks per resolution). The results
are shown in Table 3.1.

Nb. blocks Accuracy Nb. params Speed(Instances/sec)

PVCNN 1x 67.85 5.6M 29.72
PVCNN 2x 71.81 10.4M 24.4

Table 3.1: Performances of Nb. of PVCNN blocks.

Definitely, the more layers we use, the better performance we may achieve.
But it will also have more parameters and lower speed. To make a trade-
off, we decide not to add more blocks and use PVCNN 2x to finish following
experiments.

3.2.2 Resolution

In sequential model, the resolutions in different PVCNN blocks will be smaller
and smaller while the channels will increase gradually. The next question is
which resolution to start will be the best? We have tried several experiments
to find it. The results are shown in Table 3.2.

Resolutions Accuracy Nb. params Speed(Instances/sec)

1/2→1/4→1/8 69.89 10.4M 18.32
1/4→1/8→1/16 71.81 10.4M 24.4
1/8→1/16→1/32 78.506 10.4M 25.36
1/16→1/32→1/64 69.89 10.4M 29.24

Table 3.2: Performance of different resolutions.

In this section, we only change the resolution of voxels. Voxelization and de-
voxelization do not contribute parameters and that is why the parameters are
same. On the other hand, the smaller resolution, the less convolutions we need

6 3.2. Classification

to perform. That is why the speed is faster. But it does not always hold that
the smaller resolution we use, the larger receptive field, the better performance.
The best resolution is starting from 1/8 of original resolution and then with
1/16, 1/32.

3.2.3 MLP

In the original PVCNN paper, the author used two additional MLP structures
after all PVCNN blocks to aggregate information in classification task. As for
our event object classification task, we also did same experiments to explore
whether these two MLPs are useful or not. The results are shown in Table 3.3.

MLPs Accuracy Nb. params Speed(Instances/sec)

w/ MLPs 78.506 10.4M 25.36
w/o MLPs 76.897 9.1M 36.12

Table 3.3: Effects of MLPs

From the results, we can conclude that the last two MLPs can help integrate
information effectively and improve performances a lot with sacrificing speed.

3.2.4 Concatenation

In the original PVCNN paper, the author concatenates all point features from all
PVCNN blocks and also the last two MLP parts. It will help further aggregate
information intuitively but also slow down the process. Therefore, we want to
explore the necessity of concatenation in event data. The results are listed in
Table 3.4.

Concatenation Accuracy Nb. params Speed(Instances/sec)

w/ Concatenation 78.506 10.4M 25.36
w/o Concatenation 76.322 9.7M 28.88

Table 3.4: Effects of Concatenation

The result of model with concatenation is significantly better than model with-
out concatenation, because it is useful for integrating information from point-
based features at different resolutions, especially in classification task.

Figure 3.2: Final PVCNN model.

Chapter 3. Comparisons of Different Methods 7

By summarizing all we have discussed before, the final PVCNN model we used
for classification task is shown in Fig. 3.2. This model finally can achieve
accuracy of 78.506% with 25.36 instances per second.

3.3 Regression

In regression task, we need to predict the optical flow for each pixel of the entire
image. Thus the sequential model does not fit for this task. Inspired by Unet, we
modify PVCNN model to encoder-decoder structure and the hype-parameters
are also similar to Unet, which is shown in Fig. 3.3. We call it PV Unet.

Figure 3.3: PV Unet.

3.4 Model Comparison

In classification task, we compare point-based method (PointNet++), 2D voxel-
based method (2D ResNet34), 3D voxel-based method (3D ResNet18) and point-
voxel method (PVCNN). The results are shown in Table 3.5.

Models Accuracy Nb. params Speed(Instances/sec)

PointNet++ 51.956 1.8M 9.4
3D ResNet18 74.943 33.2M 58.16
2D ResNet34 76.092 21.3M 58.2

PVCNN 78.506 10.4M 25.36

Table 3.5: Performances of Classification Models

In regression task, we compare 2D voxel-based method (2D Unet), 3D voxel-
based method (3D Unet) and point-voxel method (PV Unet). The evalution

8 3.4. Model Comparison

criteria are:

EPE: 1-pixel-error, the percentage of ground truth pixels with optical flow
magnitude error > N. N is either 1, 2 or 3.

EPE: Endpoint error. The average of the L2-Norm of the optical flow error.

AE: Angular error.

The results are shown in Table 3.6.

Models EPE AE 1PE 2PE 3PE Nb. params Speed

2D Unet 1.334 4.513 33.043 14.143 7.935 19.9M 23.4
3D Unet 1.326 4.676 31.888 13.556 7.648 10.5M 7.36
PV Unet 1.296 4.570 30.270 12.996 7.530 10.5M 6.36

Table 3.6: Performances of Regression Models

We can draw the following conclusions:

1. Point-based method is inaccurate and slow;

2. Point-voxel method has the best performance in all unpretrained models
with sacrificing some speed;

3. 3D voxel-based method is either bad at performance or speed. The most
time-consuming part is 3D convolutions;

4. 2D voxel-based method has a good trade-off between performance and
speed.

Chapter 4

Explorations in PVCNN

From the previous chapter, point-voxel methods have the best performances. In
this chapter, we will explore the reasons why it performs best. Which part of
point-voxel methods is useful and why does it work?

4.1 MLP is not useful inside Point Voxel Block

One innovation about PVCNN model is the fusion of voxel-based features and
point-based features. The main difference between point-voxel method and pure
voxel-based method is the point features. In the original PVCNN paper, the
authors also have proved that the MLPs inside PVCNN blocks are important
and useful. However, their tasks are based on lidar points and our tasks are
based on event data. The results may be not consistent. In this section, we try
to cancel MLP or increase the layers of MLP.

Models Accuracy Nb. params Speed(Instances/sec)

No MLP 78.506 10.4M 25.36
Single Layer 77.816 10.5M 24.32
Two Layers 76.322 10.7M 22.12

Table 4.1: Effects of MLP parameters in PVCNN

Models EPE AE 1PE 2PE 3PE Nb. params Speed

No MLP 1.296 4.570 30.270 12.996 7.530 10.5M 6.36
Single Layer 1.366 4.687 32.473 14.712 8.405 10.6M 5.73

Table 4.2: Effects of MLP parameters in PV Unet

From Table 4.1 and Table 4.2, we can observe that point-based features gener-
ated by MLP is useless for event data, even bring some noise. The more layers
we increase, the more negative effects it has. MLP structure can not extract
useful information form event data for both classification and regression tasks.

9

10 4.2. Devoxelization is useful

We are also curious about the reason. Fig. 4.1 is a driving scene from DSEC
dataset. We can observe that in event dataset, a few hundred milliseconds are
taken as an example at most, and then the points in the time dimension tend
to be straight without too many complex 3D structures, which means there is
little information along time dimension. It is super different from lidar dataset,
which always has abundant depth information. That is why the point-feature
can not work at all.

Figure 4.1: An example from DSEC dataset. Left: Image. Right: Events

4.2 Devoxelization is useful

After removing MLP structures, the only difference between point-voxel method
and pure voxel-based method is the devoxelization part. In this section, we try
to remove the devoxelization and see the performance.

In the classification task, the original model in Fig. 4.2 voxelize and devoxelize
at each PVCNN block.

Figure 4.2: Orignial PVCNN model.

Firstly we try to remove only voxelization in Fig.4.3, which means what we pass
through different resolutions are voxel-based features, but we still use point-
based features to predict labels.

Next we remove both voxelization and devoxelization in Fig.4.4, which means
we pass voxel-based features between different resolutions and we also use voxel-
based features to do prediction. Actually, without concatenation, it pretty sim-
ilar to a shallow ResNet.

In the regression task, we do the same thing. After removing devoxelization,
the model actually becomes 3D Unet.

Chapter 4. Explorations in PVCNN 11

Figure 4.3: Remove voxelization in PVCNN.

Figure 4.4: Remove both voxelization and devoxelization in PVCNN.

Models Accuracy Nb. params Speed

Original 76.897 9.1M 36.12
w/o voxelize 69.885 9.1M 42.16

w/o both voxelize and devoxelize 70.115 9.1M 67

Table 4.3: Effects of devoxelization in PVCNN.

Models EPE AE 1PE 2PE 3PE Nb. params Speed

w/ devoxelize 1.296 4.570 30.270 12.996 7.530 10.5M 6.36
w/o devoxelize 1.326 4.676 31.888 12.556 7.648 10.5M 7.36

Table 4.4: Effects of devoxelization in PV Unet.

From the results shown in Table 4.3 and Table 4.4 , we can draw the conclusion
that passing point-based features between different resolutions performs better
than only passing voxel-based features. In other words, devoxelizing to point-
based features is necessary for a better performance.

It is because when trilinearly devoxelize, we use the position information of the
original points implicitly. But in pure 3D voxel-based methods, the original
position information will lose gradually because the resolutions become smaller
and smaller.

Chapter 5

Another Attempt

5.1 Sparse convolution

Sparse convolution have been used on events for fewer computations and faster
inference speed [7]. In our project, we replace the original dense convolution in
Point Voxel Networks by sparse convolution and show that the inference speed
increases, but the performance drops under this model structure. Specifically, in
PVCNN we replace every point-voxel block by sparse convolution, in PVUNET
we replace the point-voxel blocks in the encoder. There exist differnt types of
sparse convolutions and we use Minkowski1[1] sparse convolution.

Accuracy Nb. params Speed(Instances/sec)

Dense 78.506 10.4M 25.36
Sparse 56.122 9.7M 36.72

Table 5.1: Sparse vs. Dense convolution in classification

Table 5.1 shows the classification results in N-Caltech101 when we replace the
dense convolution by sparse convolution. The sparse convolution in this case
decreases the accuracy. And the same result is showed in optical flow regression
in Table 5.2.

EPE Nb. params Speed(Instances/sec)

Dense 1.296 10.5M 6.36
Sparse 1.393 11.2M 15.6

Table 5.2: Sparse vs. Dense convolution in regression. Lower EPE is better.

The results show that using sparse convolution to replace point voxel structure
harms the performance, under the same network structure. In regression task,
sparse convolution hurts performance because the output of sparse convolution
is sparse, while the task we want to predict is a dense optical flow.

12

Chapter 6

Discussion

6.1 Conclusion

We introduced downsampling and point masking strategies to apply Point Voxel
Networks on event data. The PVCNN can achieve high performance on events
classification as an unpretrained model. The PV Unet model can achieve similar
performance as 2D Resnet in optical flow regression. The limitation of Point-
Voxel Network is that they are not fast compared to 2D Resnet, and they need
large memory space for training. We also showed that purely point-based models
and 3D convolution models are not suitable for event data, and 2D convolution
models have a good trade-off between performance and inference speed.

6.2 Outlook

In the future it is worthwhile to explore more about the downsample method,
because it is relevent to the performance of Point Voxel Networks. The current
downsample method sums or interpolates polarities into voxel bins, ignoring
the fact that there may be positive and negative events in the same bin that
cancel each other out. And when extracting points from voxels we use the time,
i.e. the discrete bin number, of the voxel bins to recover the timestamps of
extracted points. However, more accurate ways to recover the timestamps of
points could be used, for example one could record point timestamps for voxels
during voxelization, and use them to recover the more fine-grained timestamp.

13

14 6.2. Outlook

Appendix A

Downsampling

A.1 Downsample Code

The code of downsample is in utils/vis3d.py , and one can visualize the down-
sampled points by using function vis3d , which is in the same python file.

A.2 The Effectiveness of Downsample Method

We show that our downsampling method is much better than random down-
sampling. But we do not claim it is the best downsample method, actually we
discussed possibilities to improve it in the last chapter.

The following Figure A.1 shows the effect of downsampling using the same
model. The figure is organized such that the upper righter the better. We
can see from the red vector that our downsample method outperforms ran-
dom downsample by a large margin, especially in optical flow regression task.
Under certain hyperparameter setting: summing polarities, 10 temporal bins,
threshold=1, the PVCNN model gets 78.5% accuracy, which is highest among
unpretrained models.

A.3 A new downsampling method

In 6.2 we mentioned there could be better downsampling method, and we pro-
vide a possible implementation as follows. The code is the function downsam-
ple sum new in python file utils/vis3d.py.

During voxelization, we have separate voxel-grids for positive and negative
events respectively. And we have separate voxel-grids capturing polarities and
timestamps respectively. Therefore we have 4 voxel-grids during voxelization.
For voxel-grids that capture polarities, we accumulate, i.e. sum up the polari-
ties of events in the corresponding voxel. However, accumulating polarities by
interpolation is also possible. For voxel-grids that capture timestamps, we com-
pute the average timestamp of events in each voxel. Finally we filter out voxels
using a threshold and recover events from remaining voxels. When recovering

15

16 A.3. A new downsampling method

Figure A.1: PVCNN performance under different downsample strategies. Upper
right corner is better in both plots. Blue dots represent different hyperparame-
ters with the proposed method, while red point represents random downsample.

events, we use the average timestamp of each voxel instead of the discreet bin
number, and thus we can retain more temporal information. Figure A.2 shows
the difference between the downsample method used in this project and the new
downsample method discussed in appendix.

Figure A.2: Difference between downsample methods. From left to right: orig-
inal events, the downsample method used in this project, the new downsample
method

Bibliography

[1] Christopher B. Choy, JunYoung Gwak, and Silvio Savarese. 4d spatio-
temporal convnets: Minkowski convolutional neural networks. CoRR,
abs/1904.08755, 2019.

[2] Daniel Gehrig, Mathias Gehrig, Javier Hidalgo-Carrió, and Davide Scara-
muzza. Video to events: Bringing modern computer vision closer to event
cameras. CoRR, abs/1912.03095, 2019.

[3] Daniel Gehrig, Antonio Loquercio, Konstantinos G. Derpanis, and Da-
vide Scaramuzza. End-to-end learning of representations for asynchronous
event-based data. CoRR, abs/1904.08245, 2019.

[4] Mathias Gehrig, Willem Aarents, Daniel Gehrig, and Davide Scaramuzza.
DSEC: A stereo event camera dataset for driving scenarios. CoRR,
abs/2103.06011, 2021.

[5] Mathias Gehrig, Mario Millhäusler, Daniel Gehrig, and Davide Scara-
muzza. Dense optical flow from event cameras. CoRR, abs/2108.10552,
2021.

[6] Zhijian Liu, Haotian Tang, Yujun Lin, and Song Han. Point-voxel CNN
for efficient 3d deep learning. CoRR, abs/1907.03739, 2019.

[7] Nico Messikommer, Daniel Gehrig, Antonio Loquercio, and Davide Scara-
muzza. Event-based asynchronous sparse convolutional networks. CoRR,
abs/2003.09148, 2020.

[8] Garrick Orchard, Ajinkya Jayawant, Gregory K. Cohen, and Nitish Thakor.
Converting static image datasets to spiking neuromorphic datasets using
saccades. Frontiers in Neuroscience, 9, 2015.

[9] Charles Ruizhongtai Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas.
Pointnet: Deep learning on point sets for 3d classification and segmenta-
tion. CoRR, abs/1612.00593, 2016.

[10] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J. Guibas. Point-
net++: Deep hierarchical feature learning on point sets in a metric space.
CoRR, abs/1706.02413, 2017.

[11] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolu-
tional networks for biomedical image segmentation. CoRR, abs/1505.04597,
2015.

17

[12] Yusuke Sekikawa, Kosuke Hara, and Hideo Saito. Eventnet: Asynchronous
recursive event processing. CoRR, abs/1812.07045, 2018.

Title of work:

Efficient Spatio-Temporal Processing of Event Data

Thesis type and date:

Semester Thesis, Feb 2022

Supervision:

Mathias Gehrig
Nico Messikommer
Prof. Dr. Davide Scaramuzza

Students:

Name: Kexin Shi
E-mail: kexin.shi@uzh.ch
Legi-Nr.: 20-744-538

Name: Yifei Liu
E-mail: yifei.liu@uzh.ch
Legi-Nr.: 20-742-250

Statement regarding plagiarism:

By signing this statement, we affirm that we have read the information notice
on plagiarism, independently produced this paper, and adhered to the general
practice of source citation in this subject-area.

Information notice on plagiarism:

http://www.lehre.uzh.ch/plagiate/20110314_LK_Plagiarism.pdf

Zurich, 11. 12. 2022:

http://www.lehre.uzh.ch/plagiate/20110314_LK_Plagiarism.pdf

	Abstract
	Introduction
	Related Work

	Preprocessing
	Downsample
	Voxelization
	Point Masking

	Comparisons of Different Methods
	Dataset
	Classification
	Number of PVCNN blocks
	Resolution
	MLP
	Concatenation

	Regression
	Model Comparison

	Explorations in PVCNN
	MLP is not useful inside Point Voxel Block
	Devoxelization is useful

	Another Attempt
	Sparse convolution

	Discussion
	Conclusion
	Outlook

	Downsampling
	Downsample Code
	The Effectiveness of Downsample Method
	A new downsampling method

