
CVL, ETH Zurich Deep Learning for Autonomous Driving

Project 2: Multi-task learning for semantics and depth
20% of the exam grade 26-03-2021 – 13-05-2021

Quick Links:
→ Course website
→ Piazza forum and announcements*
→ Codalab grader and leaderboard
→ Latest version of the solution template and training instructions
→ Latest version of this document
→ Latest version of the AWS setup document
* Announcements about exercise updates will be made on Piazza. Questions about the exercise
are welcome; however, if you believe that your question may reveal the solution, please make
sure to post to instructors when creating a post.

Introduction: In this exercise, we will delve into Multi-Task Learning (MTL) architectures
for dense prediction tasks. In particular, for semantic segmentation (i.e., the task of associating
each pixel of an image with a class label, e.g., person, road, car, etc.) and monocular depth
estimation (i.e., the task of estimating the per-pixel depth of a scene from a single image). As
with many other tasks nowadays, semantic segmentation and monocular depth estimation can
be effectively tackled by using Convolutional Neural Networks (CNNs) [6]. To achieve state-
of-the-art results, deep CNN models [5] of fully convolutional networks [7] are typically trained
in datasets that contain a large number of fully-annotated images, that is, images with their
corresponding ground-truth label. This allows the networks to encode feature representations
that are discriminative for the task at hand. In what follows, we are going to train MTL models
to perform semantic segmentation and monocular depth estimation jointly.

Training models in the cloud: Each team will be given an account for Amazon Elastic
Compute Cloud (AWS EC2) to conduct the experiments required for solving problems in this
assignment. The main source of technical information not covered by this document is the
solution template README.md (see Quick Links). Everyone (including the advanced users of
AWS) should study it and follow the explained steps for everything related to:

— AWS setup
— Training in the cloud
— Interactive development
— Progress monitoring
— Checkpointing and accessing submission archives

The solution template comes ready for cloud training and implements a baseline for the problems
below. The suggested workflow is to ensure the baseline trains normally and produces the
expected results before (or in parallel with) solving the exercise problems.

After each successful training of the model, the code will generate predictions on the RGB im-
ages of the test split (see Dataset section below). The submission archive containing predictions
is created automatically. Apart from test predictions, the archive also contains the experiment
configuration, trained model weights, source code, and the training log. This submission archive
will also be uploaded to your S3 bucket, which you indicated upon setting up the AWS en-
vironment. For your convenience, the S3 link to the submission archive will be available in
W&B overview of the experiment run (see W&B section below). Each submission archive can
be downloaded locally and then uploaded to the grader (see Grader) to (1) participate in the

1

https://www.trace.ethz.ch/teaching/DLAD/spring2021/index.html
https://piazza.com/class/kkfl7gm8ivo1jw
https://competitions.codalab.org/competitions/30245?secret_key=dac097ab-d5e9-42a3-8c12-bdcf4acd1f4f
https://gitlab.ethz.ch/dlad21/exercise2
https://gitlab.ethz.ch/dlad21/exercise2/-/blob/master/doc/handout.pdf
https://gitlab.ethz.ch/dlad21/exercise2/-/blob/master/doc/AWS_SETUP.md


Deep Learning for Autonomous Driving 2

leaderboard and (2) obtain the test split metrics for the final report (see “Final report hand-in”
section below).

Dataset: For this exercise, we use a toy dataset of synthetic scenes in the autonomous driving
context. The dataset is composed of predefined splits with 20000 training images, 2500 val-
idation, and 2500 test images. The validation and test splits are quite similar, so observing
the validation performance in W&B should give a good estimate of the expected score with
the grader (see W&B, Grader). The dataset contains three modalities for each image sample:
RGB, Semantic annotation, and the Depth map. The solution template and the AWS scripts
automatically handle dataset downloading; nothing should be changed about the data load-
ing pipeline. Extra supervision with other datasets or the use of pretrained weights (except
ImageNet weights) is not allowed.

Metrics: The following metrics are used to evaluate each experiment’s outcome:

— IoU (intersection-over-union) is a metric of performance of the semantic segmentation
task. Its values lie in the range [0,100]. Higher values are better. It is shown as metrics_
summary/semseg in W&B.

— SI-logRMSE (scale-invariant log root mean squared error) is a metric of performance of
the monocular depth prediction task. Its values are positive. Lower values are better. It
is shown as metrics_summary/depth in W&B.

— The Multitask metric is a simple product of the aforementioned task-specific metrics,
computed as max(iou−50, 0)+max(50−silogrmse, 0). Its values lie in the range [0,100].
Higher values are better. It is shown as metrics_summary/grader in W&B.

W&B: This year we changed the code template to use Weights and Biases for the training
progress monitoring. As part of the setup, each team will need to register a free account with
the service. Navigate to https://wandb.ai, register a new account (or login with email),
then navigate to Settings → API keys. A default key will be available: hover over the key,
click the plus button to copy it, and use this key when prompted on the first time of running
aws start instance.py. The default visibility of W&B projects is “private”, as indicated by
the closed lock icon against the project name – make sure to keep it that way throughout the
course. Feel free to erase “bad” runs to avoid cluttering; however, keep all the runs that you
reference in your final report (See Final report hand-in section) until the end of the course.

W&B allows inspecting the training dynamics (e.g., loss curves, validation metrics), collecting
advanced statistics (histograms of weights or activations), as well as displaying images of predic-
tions. The code template makes heavy use of all these features. The main tabs of interest within
each individual run (select a certain run from the dashboard first) are “Overview” and “Charts”,
which can be found on the left side. The former provides, among other run-specific information,
external links to the S3 location with checkpoints (required for resuming an abruptly terminated
experiment) and the final submission files.

However, the main benefit of W&B for efficient development comes in the aggregated view of
the experiments (select the project DLAD-Ex2 from the dashboard): the “Charts” and “Table”
tab allows one to compare different runs with different settings and identify configurations which
cause improvement (not automatically though). Each experiment may be given a name (such
as “feature1 value1 feature2 value2”) by changing the value of the --name flag in aws train.py

script. This is not necessary, however, as long as one spends a bit of time to add feature1
and feature2 keys to the configuration file (config.py). This will allow slicing the experiments
in W&B according to the value of the corresponding config keys. Thus, convoluted naming of
experiments is not required in principle.

At the end of each epoch, the metrics (see Metrics section) are evaluated for the validation
split of the dataset. This should serve as guidance to improving models when solving exercise
problems. The test performance can only be evaluated by the grader.

https://wandb.ai


Deep Learning for Autonomous Driving 3

Grader: The grader’s purpose is to evaluate a submission archive corresponding to one ex-
periment run on the test data. This is required to report scores of solutions to the exercise
problems.

The grader is hosted by CodaLab, a free service for ML challenges. To register, navigate to
https://competitions.codalab.org/ and create individual accounts for each team member.
Next, follow the grader URL (see Quick Links), and click "Participate" -> "Register". Then
send an email to Anton Obukhov (anton.obukhov@vision.ee.ethz.ch) with the subject "DLAD

2021 EX2 user: YOUR CODALAB USERNAME", with your real name and legi in the body. After
all team members are approved, you need to form teams using the “Teams” tab functionality.
You should choose the same team member as decided previously for the shared AWS accounts.
Choose a team leader who will create a new team and handle other team members’ requests.
Make sure to not make any individual submissions before joining a team properly.

To get a submission graded, navigate to "Participate" -> "Submit / View Results", enter
the W&B run name of the form GXX XX-XX <run name> XXXXX followed by some comment (e.g.,
“added ASPP”) into the “description” field, then click on the large "Submit" button, and wait
to get the submission archive uploaded. Codalab begins file upload immediately after it was
selected in the system dialogue, and does not indicate the upload progress, so give it a minute
to upload. After the upload has finished, the status will change to indicate grading has been
scheduled. You may need to refresh the page with F5 to see submission status updates after
that. If you are satisfied with the scores, you can push a submission to the leaderboard by
clicking the corresponding button.

Solving the problems: Each question (e.g. “How does SGD compare to Adam?”) assumes
your team running one or a few experiments and basing your solution on validation scores of the
runs in consideration. Make sure to mention run names used as a basis for each answer. Choose
one run that produced the best validation score for each question, and report its grader scores
(Codalab) in your report. Use the full run names (GXX XX-XX <run name> XXXXX) as generated
by the template code to refer to individual runs throughout the report.

All submission files of the runs reported in the final report are considered part of the report and
should be kept backed up (e.g., in S3, but you can also download them locally) until you receive
your final course grade. We may request these files to be shared with us throughout the course.

Final report hand-in: The report should be prepared as a PDF document. We recommend
using Overleaf for typesetting in LATEX, but any text editor capable of exporting into PDF
should do. For each problem statement and question, the final report should contain an accurate
and complete description of your solution. There is no page limit, but please avoid lengthy and
redundant descriptions. You should also include a few indicative figures from W&B and relevant
code snippets (changes made on top of the template).

Report evaluation criterions:

— code correctness of each problem’s solution;

— each problem’s grader score on par with the provided reference score;

— clarity and delivery of the solution.

Final reports must be sent by each team in a file named dlad ex2 report YOUR TEAM NAME.zip

to Anton Obukhov (anton.obukhov@vision.ee.ethz.ch) and Dengxin Dai (dai@vision.ee.ethz.ch)
by 23:59 CET 13-05-2021 with subject "DLAD 2021 EX2 final report: YOUR TEAM NAME".
The zip archive should contain the PDF report and the solution code giving the best grader
score (can be downloaded and extracted from the leaderboard).

The total number of exercise points will be communicated back before the exam. Review of
graded hand-ins will happen at the same time with exam review session.

Extra notes:

https://competitions.codalab.org/
kexin

kexin

kexin

kexin

kexin

kexin



Deep Learning for Autonomous Driving 4

— Without code modification, the submission.zip will be graded approximately as follows:
grader: 40.5, semseg: 67.5, depth: 27.1;

— Working with python code is especially convenient with PyCharm (free student license);

— Early stopping after a couple of epochs of observing W&B scores can be used to reject
the poor choice of some hyperparameters (but not all; e.g., changes to batch size and the
number of epochs require analyzing performance at the relative training progress intervals);

— If training crashes after the first step, most likely the process is out of GPU memory, with
either batch size, model, or crop size too large;

— Code, dataset, configuration, and run artifacts (W&B) sharing is not allowed during and
after the competition ends. To use versioning (GitHub or GitLab), make sure to use a
private repository. Do not change the visibility of W&B project to the public. Erase all
copies of exercise materials and W&B logs after receiving the final grade;

— Only the training split of the provided MiniScapes dataset is allowed to train the model;

— Only ResNet-34 is allowed as the Encoder backbone;

— Only ImageNet-pretrained or random weight initializations are allowed to initialize a model
during creation;

— Each team can make a total of 20 submissions to the grader, at most five submissions per
day. Use them carefully;

— For your convenience, we provide reference metrics values of the solution key after each
problem.

— If your solution performance is significantly worse than the provided reference values, that
might be a sign to look deeper into the current problem before going to the next one.
Poor performance may also have reasons in preceding problems’ solutions due to code
carry-over. Thus, we suggest making your solution close to the confidence interval of the
reference for each problem 1–3 before proceeding to the next problem.

Problem 1. Joint architecture (4+2+6=12 points)

Your starting point is a DeepLab model [1, 2, 3, 4] that consists of a ResNet-like Encoder [5], an
ASPP module, and a Decoder with skip connection. The template code functions properly and
can be trained straight away; however, the baseline performance will be poor: we intentionally
chose sub-optimal default values for some of the hyperparameters and short-circuited some of
the model parts, namely ASPP and the Decoder. Since we need to solve both tasks (semantics
and depth) under a single model, a naive MTL solution is to share all operations (i.e., Encoder,
ASPP, Decoder) between tasks except for the last convolution that maps the features of the
preceding layer to nclasses + 1 channels. The former nclasses channels correspond to pixel-wise
class probability distribution before softmax (logits) for the semantic segmentation task, while
the latter 1 channel corresponds to the regressed depth values (normalized distance in meters)
for the monocular depth estimation task. This joint architecture is depicted in Figure 1.

1. Hyper-parameter tuning (4 pts): As a first step, you need to familiarize yourself with the
hyperparameters. The file mtl/utils/config.py describes hyperparameters, which can
be changed using command line keys to the training script. We encourage you to try
different settings and examine the effect that each parameter has on the final result in
order to get a better understanding of the codebase. Once a better hyperparameter value
is found, it is safe to keep it for future experiments, provided the training time did not
increase by too much. More specifically, you should investigate the following options and
report informative conclusions about your findings.



Deep Learning for Autonomous Driving 5

Figure 1: Joint architecture

(a) The optimizer and LR choice. How does using SGD compare to Adam? Keep in
mind that the default value of optimizer_lr hyperparameter corresponds to the
default value of optimizer, and should be a couple of orders of magnitude smaller
for Adam. Also, try different learning rates. How does logarithmically changing
the learning rate affects the learning? You can try three different values for each
optimizer as an indicative bracket.

(b) The batch size. Is a larger batch size preferable over a smaller one for our tasks? When
changing the batch size, the number of steps per epoch will decrease proportionally.
To alleviate this effect, we recommend changing the number of epochs proportionally
to the batch size.

(c) Task weighting. When multiple tasks are learned together, their individual losses
should be accumulated before updating the network weights during the training stage.
This creates the need to properly balance the losses of the different tasks to avoid a
scenario where one task overwhelms the others. Can you find proper loss weights for
the employed tasks to improve their joint performance?

It is recommended to repeat the hyperparameters search during or after completing the
rest of the programming assignments. Normally, as the model changes, the best hyperpa-
rameters drift away from their initial values.

2. Hardcoded hyperparameters (2 pts): now you need to study the main building blocks of
the experiment, model, and loss modules (arranged in the respective subdirectories under
mtl directory), and perform one-line changes of the code to improve the model.

(a) Initialization with ImageNet weights (1 pts): Can you verify whether the encoder
network is initialized with weights of a model trained on the ImageNet classification
task? What is the effect of switching this option? Make sure to persist the option
leading to the improvement before proceeding to the next questions.

(b) Dilated convolutions (1 pts): Look closely at the Encoder code in model_parts.py

and check whether dilated convolutions are enabled. This aspect is closely related to
the term “output stride” used in [4]. You can use the commented print statement in
model_deeplab_v3_plus.py to help you see the mapping of each scale of the feature
pyramid to the respective number of channels. The largest scale factor in the pyramid
corresponds to the “output stride”. Set dilation flags to (False, False, True) and train
the model. Does the performance improve? If so, why? Use this model as a reference
when reporting the effects of ASPP and Skip Connection.

3. ASPP and skip connections (6 pts): Next task is to implement the ASPP module [3, 4]
along with skip connections to the decoder, whose design details are provided in the
referenced papers. You are already given the skeleton of the ASPP class, and you are
asked to replace the current trivial functionality with the proper one. The details of the
ASPP module can also be found in Figure 2. If desired, you can use the ASPPpart class as



Deep Learning for Autonomous Driving 6

Figure 2: ASPP module and Skip Connection

Figure 3: Branched architecture

well. The last missing part is the decoding stage with skip connection as done in [4]. You
are given the DecoderDeeplabV3p class that already contains the appropriate inputs and
outputs. You have to replace the current functionality with the intended one, essentially
processing the features that come from the encoder and the ASPP module and outputting
the final channels that contain the predictions. The detailed diagram of this part can be
found in Figure 2. Further information about the configuration of the layers can be found
in [4]. The code parts which require work are marked with TODO annotations. How does
the model performance change with ASPP and skip connections functioning?

Expected performance: grader: 62.3± 4.0, semseg: 83.6± 2.0, depth: 20.5± 2.0

Problem 2. Branched architecture (4 points)

In the previous problem, we used a joint architecture, which shared all network components
except the last convolutional layer – to learn both tasks. Another MTL solution is the adopt a
branched architecture [8, 9], where a common encoder is used for both tasks, but task-specific
ASPP modules and decoders are implemented for semantic segmentation and monocular depth
estimation, respectively. Figure 3 gives an overview of this architecture.

kexin



Deep Learning for Autonomous Driving 7

As part of this problem, you are asked to implement this branched architecture using the same
building blocks: Encoder, ASPP, and Decoder modules. To narrow down the scope of effort
and prevent unintentional breaking of the pipeline, all code changes should be restricted to
mtl/models path. How does it compare to the joint architecture both in terms of performance
but also w.r.t. the model size and the required computations?

Instead of modifying ModelDeepLabV3Plus class in mtl/models/model_deeplab_v3_plus.py,
create a new file in mtl/models directory, and hook up your new model to the framework in two
places: (1) add some new text identifier of it to the choices dictionary of the model name com-
mand line parameter in mtl/utils/config.py, and (2) add the mapping of this new identifier
to your new model’s class name in mtl/utils/helpers.py in resolve model class function.
Now you can dispatch between your two models using the model name command line argument.

Expected performance: grader: 65.3± 4.0, semseg: 84.5± 2.0, depth: 19.2± 2.0

Problem 3. Task distillation (4 points)

Building upon a branched MTL architecture with a shared encoder followed by task-specific
operations, recent works [11, 12, 10] proposed to leverage the initial task predictions to distill
information across tasks. This is typically done by using an attention module to select the rel-
evant features from another task that can be useful for our main task. One such architecture is
depicted in Figure 4. Here, the features before the last convolutional layer of each task-specific
decoder (e.g., Decoder #1) are summed with the corresponding features coming from the other
task (Decoder #2) after applying self-attention (SA) to the latter. Then, the summed features
are passed through another decoder module (Decoder #3) to get the final task prediction. This
distillation procedure is applied to every task.

Figure 4: Branched architecture with task distillation

As part of this problem, you are asked to implement the aforementioned architecture (4 pts).
Note that the SelfAttention class is already implemented for you. How does the distillation
procedure compare to the branched architecture in the previous problem? When implementing
the final decoder modules (Decoder #3 & #4), you can adopt the design of the initial ones
(Decoder #1 & #2) before adding skip connections.

Similarly to the branched architecture, put a new model into a separate file and hook it up to
the training code in two places.

Expected performance: grader: 67.3± 4.0, semseg: 84.5± 2.0, depth: 17.3± 2.0

kexin

kexin



Deep Learning for Autonomous Driving 8

References

[1] Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic im-
age segmentation with deep convolutional nets and fully connected crfs. arXiv preprint
arXiv:1412.7062 (2014)

[2] Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: Semantic
image segmentation with deep convolutional nets, atrous convolution, and fully connected
crfs. IEEE transactions on pattern analysis and machine intelligence 40(4), 834–848 (2017)

[3] Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for
semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)

[4] Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous
separable convolution for semantic image segmentation. In: Proceedings of the European
conference on computer vision (ECCV). pp. 801–818 (2018)

[5] He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 770–
778 (2016)

[6] Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional
neural networks. In: Advances in neural information processing systems. pp. 1097–1105
(2012)

[7] Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmenta-
tion. In: Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 3431–3440 (2015)

[8] Neven, D., De Brabandere, B., Georgoulis, S., Proesmans, M., Van Gool, L.: Fast scene
understanding for autonomous driving. arXiv preprint arXiv:1708.02550 (2017)

[9] Vandenhende, S., Georgoulis, S., De Brabandere, B., Van Gool, L.: Branched multi-task
networks: deciding what layers to share. arXiv preprint arXiv:1904.02920 (2019)

[10] Vandenhende, S., Georgoulis, S., Van Gool, L.: Mti-net: Multi-scale task interaction net-
works for multi-task learning. arXiv preprint arXiv:2001.06902 (2020)

[11] Xu, D., Ouyang, W., Wang, X., Sebe, N.: Pad-net: Multi-tasks guided prediction-and-
distillation network for simultaneous depth estimation and scene parsing. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 675–684 (2018)

[12] Zhang, Z., Cui, Z., Xu, C., Yan, Y., Sebe, N., Yang, J.: Pattern-affinitive propagation across
depth, surface normal and semantic segmentation. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pp. 4106–4115 (2019)


