CVL, ETH Zurich Deep Learning for Autonomous Driving

Project 1: Understanding Multimodal Driving Data
01/03/21 - 21/03/21

General Info: This project accounts for 10% of your grade. You are welcome to ask questions
in Piazza. If you think that your question may reveal the solution, please feel free to email your
question to: Ozan Unal (ozan.unal@vision.ee.ethz.ch) or Dengxin Dai (dai@vision.ee.ethz.ch)

Overview: In this exercise we will look into understanding multimodal driving data. Firstly,
you will create an arsenal of visualisation tools that will help you understand and debug your
future models (such as in Project 3). In specific, you will visualize the outputs of common
tasks such as 3D object detection and point cloud semantic segmentation given a LiDAR point
cloud, corresponding RGB camera image, ground truth semantic labels and network bounding
box predictions. Finally you will increase your understanding of the LiDAR sensor itself by
identifying each laser ID from the point cloud directly, and dealing with the distortion caused
by the vehicle motion with the aid of GPS/IMU data.
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Figure 1: Camera setup.

Materials: In the gitlab repository! we provide two autonomous driving scenes that can be
used for Problems 1-3. data.py must be used for your submission. For each task we provide an
example result obtained using demo.py which you can use to visually confirm your results. To
save you time, the scenes are given as a python dictionary and can be accessed via the provided
load_data.py. Make sure to install pickle.

import os
from load_data import load_data

data_path = os.path.join(’your/data/dir’,’data_name.p’)
data = load_data(data_-path)

The data dictionaries provided contain the following keys:

e velodyne is the point cloud of the scene. The LiDAR scanner used is the Velodyne
HDL-64E that spins at 10 frames per second, capturing approximately 100k points per
frame. This sensor has 64 channels. More information about the sensor can be found in
the associated data sheet.

Thttps://gitlab.ethz.ch/dlad21/exercisel
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The point cloud is given as a (num_pointsx4) numpy.array object. The first three
dimensions of the array contain the x, y and z coordinates stored in metric (m) using the
velodyne coordinate system. The fourth dimension is the reflectance intensity value which
is between 0 and 1.

e image_2 is the RGB image received from left RGB camera (Cam 2 in Fig.1). A capture
by the camera is triggered when the velodyne is looking exactly forward.

e P _rect_XO gives the intrinsic projection matrices to Cam X after rectification, given as a
(3x4) numpy.array.
The notation is given as P _rect_destinationFrame-originFrame. Not all of them are needed
for the following problems.

e T_camX_velo are the homogeneous velodyne to rectified camera coordinate transforma-
tions and are provided as (4x4) numpy.array objects.
The notation is given as T_destinationFrame_originFrame. Not all of them are needed for
the following problems.

e sem label is a (num_points,) numpy.array object that gives the semantic label of each
point within the scene.

e color_map is a dictionary which maps numeric semantic labels to a BGR color for visu-
alization. (Careful, not RGB!)
Ezxample: 10: [245, 150, 100] # car, blue-ish

e labels is a dictionary which maps the numeric semantic labels to a string class.

Ezample: 10: “car”
e objects contains a list of lists. Each sublist has 8 columns of the following:
1 type describes the type of object. For simplicity we only provide “Car” labels.
3 dimensions 3D object dimensions: height, width, length (in meters)
3 location 3D object location x,y,z in Cam 0 coordinates (in meters) describing the center
of the bottom face of the bounding box
1 rotation_y rotation ry around Y-axis in Cam 0 coordinates [— : 7| centered around
its center

Ezample: [Car, 1.65, 1.67, 3.64, -0.65, 1.71, 46.70, -1.59]

The coordinate systems are defined the following way, where directions are informally given
from the drivers view, when looking forward onto the road:

e Velodyne: x: forward, y: left, z: up
e Camera: x: right, y: down, z: forward

For Problem 2.2 we also provide a basic 3D visualization code for point clouds under 3dvis.py
that uses vispy.

The data for Problem 4 can be found under the directory /data/problem_4. We also provide
additional utility functions in data_utils.py for Problems 3 and 4.

Submission: For each problem statement, the report (report.pdf) should contain a concise
description of your solution and the resulting figures. There is no page limit, but please avoid
lengthy and redundant descriptions. A corresponding python file for each task (taskl.py,
task2.py, 3dvis.py, task3.py, task4.py) should be under a codes directory. Final re-
ports must be sent by each team in a file named dlad_ex1 teamID _studentnamel student-
name2.zip to Ozan Unal (ozan.unal@vision.ee.ethz.ch) by 21-03-2021 with subject “DLAD EX1:
YOUR_TEAM_ID”.
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Problem 1. Bird’s eye view (0.5 point(s))

Figure 2: An example of a BEV image with resolution (0.2, 0.2)m in x, y respectively. For
visualization purposes the figure is rotated by 90°.

The bird’s eye view (BEV) is an elevated view of a scene from directly above. Although BEV
brings information loss during projection and discretization, crucially it preserves the metric
space. Remember, objects we face in autonomous driving scenes such as cars or pedestrians do
not fly (at least not yet)! This allows, detection models to explore priors about the size and
shape of the object categories in the BEV view without obscurances.

Display the BEV image of the given scene with pixel intensities corresponding to the points’
respective reflectance values. The resolution should be 0.2m, 0.2m in x, y coordinates respec-
tively. If multiple points lie within the same bin, the highest intensity point should be sampled.
A reference solution can be seen in Fig.2.
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Problem 2. Visualization‘ (241.5+1=4.5 point(s))

Figure 3: An example of a LiDAR point cloud projected onto the Cam 2 image along with
the predicted bounding boxes. The point cloud is colored using color_map and the predicted
pointwise semantic labels.

We are tasked to create a model that can detect all vehicles within a scene while also generating
pointwise semantic labels. After a while we come up with a multitask network that shows
promise. Now let’s visualize some results from this network. While metrics can tell a compelling
story, qualitative assessments also play an important role in understanding a models strengths
as well as its weaknesses (keep this in mind for Project 3!). Almost all autonomous driving
capable cars that carry a LIDAR scanner run multiple RGB cameras (as they are in comparison
much cheaper). However, each measured signal resides within its sensor’s coordinate system.
Through LiDAR-camera calibration, a rigid transformation matrix is determined to establish
correspondences between the points in the 3D space and the pixels in the 2D space.

1. Given the intrinsic and extrinsic projection matrices, project the point cloud onto the
image of Cam 2. Color each point projected according to their respective semantic label.
The color map for each label is provided with the data. A reference solution can be seen
in Fig. 3 that also includes the results from Problem 2.2.

Hint: Make sure to filter your point cloud! The provided Velodyne scans are 360°. Projection
equations will give you a result even for points that are behind the camera which will get pro-
jected as if they were in front, but vertically mirrored.

Projecting a point cloud onto an RGB image allows us the visually assess the quality of our 3D
semantic segmentation results by comparing the estimated labels to the ground truth which can
be inferred from the image itself. In addition to the semantic labels of the scene, our network
also predicted the 3D bounding boxes of all vehicles. Similar to the segmentation results, the
3D detection results can also be projected onto the camera image to visually assess the quality
of the model estimations.

2. In addition to the points with semantic labels, project the 3D bounding boxes of all given
vehicles onto the Cam 2 image. A reference solution can be seen in Fig. 3.

Hint: A 3D bounding box is essentially just 8 points, but don’t forget to draw the lines in
between.
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Figure 4: An example of a LiDAR point cloud visualized in 3D using a modified version of the
provided 3dvis.py.

As you might imagine, visualization onto a 2D RGB image is not always ideal. For example,
not only is it hard to assess the quality of bounding boxes when projected, but a dataset might
contain pointwise semantic labels for a 360° point cloud while only providing a front-facing RGB
camera system (as in the case here). It is therefore important to be able to also visualize the
point cloud in its native 3D space. To save you the trouble, we provide a bare-bone visualization
code 3dvis.py that can be used to visualize a point cloud as well as 3D bounding boxes.

3. Use and modify 3dvis.py to visualize the scene in 3D. Color each point according to its
semantic label and draw all 3D bounding boxes within the scene. Looking at the results,
assuming that the semantic labels are all correct, how many cars did our network fail to
identify that lie within the camera field-of-view? A reference solution can be seen in Fig. 4.
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Problem 3. ID Laser ID‘ (1 point(s))

Figure 5: An example of identified Laser IDs.

In this exercise, you need to identify the laser ID of each point (i.e. the point is taken
by which of the 64 lasers) in a given 3D point cloud. Laser IDs are normally available in the
recorded data, but they can also be “roughly” (due to noise in the data) inferred from the point
cloud directly. Some of the information you need about the Velodyne HDL64 LiDAR can be
found in Fig. 8. Identify the Laser IDs ¢ € {1,...,64} for every point in the point cloud and
project them onto Cam 2. You can use four alternating colors to indicate the identified IDs. A
reference solution can be seen in Fig. 5.
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Problem 4. Remove Motion Distortion (4 point(s))
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Figure 6: An illustration of where the vehicle’s rotation is added to the laser rotation. The
LiDAR viewpoint (and measured distances due to vehicle’s translation) needs to be “untwisted”
according to the vehicle’s movement.

As taught in lecture 01, the LiDAR scanner takes depth measurements continuously while
rotating around its vertical axis (in contrast to the cameras, which are triggered at a certain
point in time). Acquiring data from a moving car means that the car moves fast while the
LiDAR rotates. Distortions are caused by the vehicle motion. They depend on the motion
speed and the scan period. For instance, our Velodyne HDL64 running at 10 Hz:

e a linear motion at 50 km/h causes a gap of 1.38 m between the begin and the end of a
scan.

e a rotation motion at 25°/s creates a gap of 2.19 m at a distance of 50 m.

Consequently, the 3D point cloud is distorted and might generate errors if the map is used for
precise perception and location based on the LiDAR point cloud. Thus, when computing point
clouds we need to ‘untwist’ the points linearly with respect to the Velodyne scanner’s location
at the beginning and the end of the 360° sweep. In order to know the locations of the velodyne
scanner, we use the data provided by a high-precision combined GPS/IMU system.

An illustration of the motion distortion can be found in Fig. 6.

We need to work with three sensors in this task: Camera, LIDAR and GPS/IMU. Each
sensor stream is stored in a single folder. The main folder contains meta information and a
timestamp file, listing the timestamp of each frame of the sequence to nanosecond precision.
Numbers in the data stream correspond to each numbers in each other data stream and to line
numbers in the timestamp file (0-based index), as all data has been synchronized. The camera
has been triggered directly by the Velodyne laser scanner, while from the GPS/IMU system
(recording at 100 Hz), we have taken the data information closest to the respective reference
frame.

The GPS/IMU information is given in a single small text file which is written for each
synchronized frame. All the GPS/IMU files are stored in the folder ‘oxts’. Each text file
contains 30 values which are listed in Table 1. Not all values are needed for this exercise.

The velodyne point clouds are stored in the folder ‘velodyne_points’. To save space, all scans
have been stored as Nx4 float matrix into a binary file, where the first 3 values correspond to
x, y and z, and the last value is the reflectance information. The time-stamps for the beginning
and the end of the sweeps can be found in the timestamps file. The velodyne rotates in clockwise
direction. The images are stored in the folder ‘image_02’, in lossless png format.

A stream of 430 frames are given for this task so that you can see different types of motion.
They are in the folder ‘2011.09_26_drive_0029_sync’. The calibration matrices are provided as
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(b): projection after motion distortion removed

Figure 7: An example (‘0000000037’) showing how motion distortion looks like when projected
to an image (a) and how it looks like when corrected (b). Pay attention to the signs.

txt files in the folder as well. For this task, you need to project the LiDAR points to the
corresponding images in order to verify the results. Please color the points according to its
distance. In your report, please show the results for frame: ‘0000000037’. You need to show
side-by-side the result of a direct projection with motion distortion and the result when motion
distortion is removed. A reference solution can be found in Fig. 7. Some of the functions you
might need are provided in ‘data_utils.py’.

Hint: For a specific frame, the time order is: ‘LiDAR_starts’ — ‘camera_triggered’ — ‘Li-
DAR_ends’. You need to use these timestamps to decide where (relative to the front view, i.e.
the camera direction) the LiDAR starts the scan for each frame. Remember that all cameras
have been triggered directly by the Velodyne laser scanner; the relationship between the cam-
era triggers and the velodyne is the following: the cameras are triggered when the velodyne is
looking exactly forward (into the direction of the cameras).

Hint: In the provided LiDAR point cloud, the order of the points is lost — no information about
which point is taken before which other points. You need to figure this out based on where the
LiDAR starts each scan. Since the lasers fire in sequence, we can figure out the order, from the
first point to the last point, by ranking the points according to one value which you need to
calculate.

Hint: Since short term road vehicle motion is mostly planar, you can only consider the rotation
around z axis, i.e. the yaw.

Hint: The untwisted point cloud can be understood as if it were generated when the vehicle is
static at a location. This location needs to be specified via timestamp.

Hint: To keep it simple, you can assume that the translation and rotation are independent, and
they can be modeled by separate linear models. The whole task can be solved as an interpolated
rigid transformation problem.
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High Definition Lidar Sensor
The HDL-64E S3 provides high definition 3 dimensional information about the surrounding environment.

* 64 channels

* Measurement Range: Up to 120 m

+ Range Accuracy: Up to +2 cm (Typical)'

« Field of View (Vertical): +2.0° to -24.9° (26.9°)

+ Angular Resolution (Vertical): 0.4°

« Field of View (Horizontal): 360°

+ Angular Resolution (Horizontal/Azimuth): 0.08° - 0.35°
* Rotation Rate: 5 Hz - 20 Hz

+ Laser Product Classification: Class 1 Eye-safe
* Wavelength: 903 nm

Mechanical/ + Power Consumption: 60 W (Typical)?

Electrical/ + Operating Voltage: 12V -32V

Operational * Weight: 28 Ibs. (12.7 Kg) (without cabling)

+ Dimensions: 215 mm Diameter x 283 mm Height (Base: 203 mm x 203 mm)
+ Operating Temperature: -10°C to +60°C3

+ Storage Temperature: -40°C to +85°C

Output: + 3D Lida r Data Points Generated:
- Single Return Mode:  ~1,300,000 points per second
- Dual Return Mode: ~ ~2,200,000 points per second*
+ 100 Mbps Ethernet Connection
+ UDP Packets Contain:
- Time of Flight Distance Measurement
- Intensity Measurement
- Rotation Angles
- Synchronized Time Stamps (ps resolution)
* GPS: $GPRMC NMEA Sentence from GPS Receiver (GPS not included)

63-9194 Rev-K

For more details and ordering information, contact Velodyne Sales (sal lyne.com)
1. Greater than or equal to 80% of channels at ambient wall test; remaining channels better than or equal to 5 cm
2. Operating power may be affected by factors including but not limited to range, reflectivity and environmental conditions

3. Operating temperature may be affected by factors including but not limited to air flow and sun load
4. Configuration dependent

& CLASS 1 LASER PRODUCT

Copyright ©2018 Velodyne Lidar, Inc

Specifications are subject to change without notice. Banner image courtesy of Volvo Cars USA, LLC. Other trademarks or registered tradema

s are property of their respective owners

Velodyne Lidar, Inc. 5521 Hellyer Ave, San Jose, CA 95138 / lidar@velodyne.com / 408.465.2800 elidar.com

Figure 8: The Specifics of Velodyne HDL64 S3.
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- lat:

- lon:

- alt:

- roll:

- pitch:
- yaw:

- posacc:
- velacc:

- navstat:
- numsats:
- posmode:
- velmode:
- orimode:

latitude of the oxts-unit (deg)

longitude of the oxts-unit (deg)

altitude of the oxts-unit (m)

roll angle (rad), 0 = level, positive = left side up, range: -pi .. +pi
pitch angle (rad), 0 = level, positive = front down, range: -pi/2 .. +pi/2
heading (rad), 0 = east, positive = counter clockwise, range: -pi .. +pi
velocity towards north (m/s)

velocity towards east (m/s)

forward velocity, i.e. parallel to earth-surface (m/s)

leftward velocity, i.e. parallel to earth-surface (m/s)

upward velocity, i.e. perpendicular to earth-surface (m/s)
acceleration in x, i.e. in direction of vehicle front (m/s?)
acceleration in y, i.e. in direction of vehicle left (m/s?)
acceleration in z, i.e. in direction of vehicle top (m/s?)

forward acceleration (m/s?)

leftward acceleration (m/s?)

upward acceleration (m/s?)

angular rate around x (rad/s)

angular rate around y (rad/s)

angular rate around z (rad/s)

angular rate around forward axis (rad/s)

angular rate around leftward axis (rad/s)

angular rate around upward axis (rad/s)

velocity accuracy (north/east in m)

velocity accuracy (north/east in m/s)

navigation status

number of satellites tracked by primary GPS receiver

position mode of primary GPS receiver

velocity mode of primary GPS receiver

orientation mode of primary GPS receiver

Table 1: The 30 values (in order) from the GPS/IMU system.
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Problem 5. Bonus Questions: you can earn 1 more point (1 point(s))

1. Eye safety: It is not safe for the human eye to look at a spinning LiDAR when it is too
close. Why is the risk higher when we are closer to the sensor?

2. Wet roads pose challenges for both cameras and LiDAR. What are these challenges and why?

3. In this exercise, you have projected LiIDAR points onto images. In the setup in Fig.1, the
LiDAR sensor and the cameras are non-cocentered — it can never be exactly non-cocentered.
What problem this may cause for the data projection between the two sensors (LiDAR and
Cam?2 for instance)? Do you think this problem will be more severe or less severe when the two
sensors are more distant from each other?



