

University of Zurich

1. Motivation

- Autonomously navigating quadrotors through cluttered environments as fast as possible
- Minimum-time flight requires the vehicle to operate on the edge of its physical limits and perceptual limits
 - high speeds and accelerations
 - Imited field of view and motion blur
 - Imited sensing range
 - Imited computation

2. Methodology

Learning state-based teacher policy

- Combine curriculum reinforcement learning with topological path planning
- Perception aware reward

$$r_{pa} = \exp(-\|\boldsymbol{\theta}_{yaw} - \boldsymbol{\theta}_{dir}\|),$$

Parallelized environment (x100)

Learning vision-based student policy

Encode depth images using an autoencoder

$$L(\theta, \phi) = \frac{1}{T} \sum_{t=1}^{T} \| \mathbf{I}(t) - \mathbf{D}_{\theta} (\mathbf{E}_{\phi} (\mathbf{I}(t)))$$

Train a control policy using imitation learning

Learning Perception-Aware Agile **Flight in Cluttered Environments**

Yunlong Song, Kexin Shi, Robert Penicka, Davide Scaramuzza

3. Hardware-in-the-loop Flight : Physical drone, Virtual environment, and Closed-loop control

3. Baseline Comparison: Planning + MPC versus RL

Environment	Case	Non-perception-aware				Perception-aware (ours)			
		Sampling-based [32] + MPC [33]		State-based [6]		State-based (teacher)		Vision-based (student)	
		Success[%]	Time[s]	Success[%]	Time[s]	Success[%]	Time[s]	Success[%]	Time[s]
Columns	0	25	1.22	100	$1.10{\pm}0.02$	100	$1.16{\pm}0.02$	100	$1.10{\pm}0.02$
	1	0	-	100	$1.10{\pm}0.02$	100	$1.10{\pm}0.03$	100	$1.10{\pm}0.03$
	2	27	1.14	100	$1.10{\pm}0.02$	100	$1.10{\pm}0.02$	100	$1.10{\pm}0.03$
	3	16	1.70	100	$1.40{\pm}0.04$	100	$1.46 {\pm} 0.04$	100	$1.39{\pm}0.04$
Office	0	41	2.38	100	$1.80{\pm}0.04$	100	$1.92{\pm}0.04$	100	$1.79 {\pm} 0.04$
	1	28	1.86	100	$1.80{\pm}0.03$	100	$1.82{\pm}0.02$	100	$1.76{\pm}0.02$
	2	56	2.29	100	$1.62{\pm}0.02$	100	$1.66 {\pm} 0.03$	100	$1.63 {\pm} 0.03$
	3	70	2.16	100	$1.46 {\pm} 0.02$	100	$1.48 {\pm} 0.02$	100	$1.45{\pm}0.02$
Racing	0	57	1.61	100	1.33 ± 0.03	100	$1.32{\pm}0.02$	100	$1.33 {\pm} 0.03$
	1	51	1.64	100	$1.30{\pm}0.02$	100	$1.42 {\pm} 0.03$	100	$1.31 {\pm} 0.04$
	2	76	1.72	100	$1.42{\pm}0.02$	100	$1.44{\pm}0.02$	100	$1.43 {\pm} 0.02$
	3	54	1.80	100	$1.42 {\pm} 0.02$	100	$1.48{\pm}0.02$	100	$1.39{\pm}0.01$

ROBOTICS & PERCEPTION GROUP

download paper here!