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Abstract

The report presents COLAM, an offline python SLAM us-
ing COLMAP that is robust, accurate, and highly extensi-
ble. We build the new system to leverage the advantages
of both COLMAP and ORB-SLAM, the former known for
its high-quality reconstruction and the latter for its efficient
tracking of sequential data. Our approach was evaluated
against COLMAP and ORB-SLAM? on 20 sequences from
TUM-RGBD and KITTI, representing indoor and outdoor
environments, respectively. The results show that COLAM
achieves a much faster speed than COLMAP, better recon-
struction against ORB-SLAM?2, and the same level of tra-
Jjectory accuracy as both. Our code would be available at
https://github.com/Chiaki530/COLMAPSLAM.

1. Introduction

Colam Pipeline

Figure 1: COLAM Pipeline

Simultaneous localization and mapping (SLAM) and
Structure from Motion (SfM) are two highly overlapping
tasks for building a 3d mapping and getting a trajectory of
cameras, with the difference that SLAM processes sequen-
tial images very efficiently in real-time and focuses mainly
on the trajectory, while SfM processes unordered images
and focuses on the 3d mapping, but is significantly slower.
Despite their differences, they have both found positions in
an enormous range of applications.

However, if one wants to build a large-scale reconstruc-
tion like for cities, SLAM is fast but does not provide good
enough 3d mapping because it focuses mainly on the trajec-
tory. SfM has a good 3d mapping but is too slow and takes
too long to reconstruct a large-scale scene. The appropriate
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trade-off between these two methods should be an offline
but not too slow system that can build a sufficiently good
reconstruction for video sequences.

In this work we build on the main ideas from ORB-
SLAM][7] and COLMAPI ! 1], to design COLAM, an offline
SLAM in python, which has the following properties:

e Faster speed than COLMAP.

e Same level of trajectory accuracy as ORB-SLAM2[&].

e Better reconstruction quality than ORB-SLAM?2.

¢ High extensibility, 100% python, and support customized
features and matching methods thanks to hloc toolbox[9].

2. Related Work

NetVLADI[2] is a CNN architecture for weakly super-
vised place recognition, which outperforms non-learned im-
age representations. We use it to extract global features
from images to detect loops.

Hloc[9] is a toolbox for SfM implementing hierarchical
localization, leveraging image retrieval and feature match-
ing, and is fast, accurate, and scalable. We slightly adapt
hloc for sequential performance and use it to extract and
match features as well as to detect loops.

COLMAP[11] is a robust and accurate incremen-
tal Structure-from-Motion reconstruction pipeline for un-
ordered images, with user-friendly graphical and command-
line interfaces. We use its python binding, pyCOLMAP,
in the registration, triangulation, and local refinement mod-
ules.

ORB-SLAM][7] is a fast, robust monocular SLAM sys-
tem able to work in real-time in both indoor and outdoor
environments. We leverage ideas from all three threads of
the slam system: tracking, mapping, and loop closing, to
achieve high efficiency and alleviate scale drift.

Ceres[ 1] is an open-source C++ library for modeling and
solving large, complicated optimization problems. We use
its python binding pyCeres for bundle adjustment and pose
graph optimization.


https://github.com/Chiaki530/COLMAPSLAM

3. System Overview

COLAM, as in Figure 2, is composed of four modules:
initialization, tracking, local mapping, and loop closure.
After initialization, we perform tracking for each frame and
pass each selected keyframe to local mapping, loop detec-
tion, and closing.

Globally we maintain the Reconstruction Object, the
Correspondence Graph Object, and the Covisibility Graph.
The first two objects are from COLMAP, and they store all
necessary information for the images, keypoints, and map
points. The Covisibility Graph is defined in ORB-SLAM
as a graph in which nodes are keyframes, and edge weights
the number of shared map points between two image nodes.
Two keyframes are defined as neighbors if they share > 15
map points.
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Figure 2: COLAM system overview

4. Initialization

The purpose of map initialization is to compute the rel-
ative poses of an initial set of frames and triangulate an
initial set of map points. We use the hloc toolbox[9]
to extract either SIFT, SuperPoint[3] or customized fea-
tures, and match them through either nearest neighbor or
SuperGlue[10]. Then we use pycolmap', a python binding
for COLMAP[ ! 1], to reconstruct an initial scene and sup-
ports both calibrated and uncalibrated cameras.

Uhttps://github.com/colmap/pycolmap

5. Tracking
5.1. New Frame Localization

We extract the same kind of features as in initialization
and match them with the last three keyframes. Then we
estimate the absolute pose using RANSAC and the PnP
algorithm[6], followed by a motion-only Bundle Adjust-
ment.

In the case of track failure, which could be due to in-
adequate features, matches, or 3D point inliers, we handle
it by registering more recent frames as keyframes and do
relocalization globally.

5.2. Keyframe Check

The goal of keyframing is to balance the accuracy and
efficiency of the slam pipeline. We get rid of redundant
frames to enable more powerful deep learning-based feature
extractor[3] and matcher[ | 0] within the same time span, and
if performed well, could filter out frames of poor quality and
add robustness to the reconstruction.

To insert a new keyframe, all the conditions must be met
as follows:

1. The average optical flow of all matches between
the current frame and the last keyframe, normalized
against the image width, is larger than 0.02.

2. More than 100 matches score higher than 0.9 if using
nearest neighbor and 0.7 if using SuperGlue[©].

3. The percentage of matched keypoints is between 10%
to 50%.

Condition 1 and the upper bound of the matched ratio in
condition 3 ensures enough movement between keyframes
for efficiency, while condition 2 and the lower bound in con-
dition 3 guarantees the tracking quality for accuracy.

To prevent track failure and facilitate refinements using
the covisibility graph, we also insert keyframes when more
than 4 frames have passed from the last keyframe, and when
there are less than 60 3D point inliers during the PnP local-
ization.

6. Local Mapping
6.1. Keyframe Insertion and Triangulation

We add the matches between the new keyframe and past
3 keyframes into the correspondence graph and register the
keyframe in the reconstruction object. We do not explicitly
update the covisibility graph as it can be inferred from the
reconstruction object.

Then we triangulate new map points using the robust
and efficient incremental triangulator from COLMAP[11],
which leverages transitivity and can handle outlier contam-
inations.



6.2. Local Bundle Adjustment

We perform local BA in the same fashion as ORB-
SLAM that optimizes the current keyframe, all its neighbors
in the covisibility graph, and all map points seen by those
keyframes. All other keyframes seeing these map points
contribute to the loss but keep their poses fixed.

After local BA, we merge tracks and filter modified
keyframes and map points to remove outliers as is done in
COLMAP.

6.3. Global Bundle Adjustment

We perform a global BA every 20 keyframes and opti-
mize all keyframes and map points. We do it in an iterative
fashion by first retriangulating map points, merging tracks
and filtering outliers as is done in COLMAP.

7. Loop Closing

We perform loop closing in a similar fashion to ORB-
SLAM][7]. We first detect a loop, then compute a similarity
transformation to close the loop.

7.1. Loop Candidates Detection

We use NetVLADI[2] to extract a 4096-d and L2-
normalised global descriptor for each frame. To compare
image similarities, we compute the dot product between two
global descriptors and get a similarity score between 0 and
1. A loop is accepted if consecutively three frames have
similarity scores > 0.4 with the current keyframe.

7.2. Loop Fusion and Similarity Transformation

In this step we fuse duplicated map points seen by cur-
rent keyframe and loop candidate, and compute a similarity
transformation from these 3D-3D correspondence.

We first solve a Perspective-n-Point (PnP)[6] problem
in a RANSAC scheme to relocalize the current keyframe
with respect to the loop candidate and candidate’s neigh-
bors in the covisibility graph. We store the pose of the cur-
rent keyframe, and change it to the newly estimated one.
The stored pose will be used to move map points after Pose
Graph Optimization. Then we further validate inlier PnP
correspondences by projecting the 3D points into the image
and compare the reprojection error with a strict threshold.
If this 3D-2D correspondence is validated, we add the ob-
servation to the current keyframe and merge the 3D point
with 2D keypoint’s corresponding 3D point, if it has one.
We compute a similarity transformation from the validated
3D-3D correspondences using Horn’s method[5], and get a
scale s.; between current keyframe K. and loop candidate
frame K; to be used in the next step.

7.3. Pose Graph Optimization

We use a 7 DoF pose graph optimization[!2] to opti-
mize camera poses, one degree of freedom for scale, three
for rotation and three for translation. We add edges be-
tween consecutive keyframes, edges in covisibility graph
that has > 100 shared 3D points, and the loop edge as con-
straints. The residual for an edge between keyframe K; and
keyframe K is defined as:

rij = 10gsim(3)(Sij SjuwSiy ) (1

, where S;; is the relative Sim(3)[12] transformation from
K; to K; computed from stored poses while setting scale
equal to 1, except for the loop closing edge where S; is
computed from new poses while setting scale equal to s
in the previous step. [0ggim3)[12] transforms an element
in Sim(3) into r; ; which is a vector in R, and we optimize
keyframe poses by minimising the cost:

C= Z Tz:in,jTi,j (2)
4,7

, where A; ; is the information matrix of the edge, and set
to identity as in [13].

After the similarities Sy.'" are corrected, we use the
stored pose T}, to correct the position of a map point x;
by
mqorr — (Sgorr)flTiqvxj (3)

J jw

, and then S5°™" is transformed back to a corrected pose
T by setting the translation to be its translation divided
by its scale, leaving the rotation unchanged.

8. Experiments

We experiment with our method on a diverse set
of datasets containing both indoor and outdoor scenes.
We compare our method with the ORB-SLAMZ2[8] and
COLMAP[11]. For ORB-SLAM2, we use the monocular
setting with default parameters with the given camera pa-
rameters. For COLMAP, we adopt the automatic recon-
struction pipeline with the video sequence and a single cam-
era option without camera parameters. Following previous
work, we evaluate the accuracy of the camera trajectory us-
ing the Absolute Trajectory Error (ATE). To evaluate the 3D
structures, we visualize the point clouds. We also perform
ablation study of our key components.

8.1. Datasets

TUM-RGBD[14] is a large-scale indoor dataset with
RGB-D images captured from Microsoft Kinect sensor and
ground truth trajectory for evaluating visual odometry and
visual SLAM systems. We only use the monocular RGB
images with sensor resolution 640 x 480.



KITTI[4] is an outdoor dataset for autonomous driving
and other challenging real-world computer vision bench-
mark including stereo, optical flow, visual odometry, etc.
We use the monocular gray scale images from ‘images_(’
with resolution 1226 x 370.

8.2. TUM-RGBD

On TUM-RGBD dataset, results for Absolute Trajectory
Error (ATE) and running time are shown in Table 1. The
visualization of trajectories and 3D structures are shown in
Figure 3 and Figure 4 respectively. Our method can track all
five scenes, while COMLAP fails on ‘frl/room’ and ORB-
SLAM2 fails on ‘frl/room’ and ‘fr1/desk2’, showing the
robustness of our method. As for 3D structure, our method
performs much better than ORB-SLAM?2 and has compa-
rable performance with COLMAP with 3-10 times faster
thanks to keyframe selection module and local refinement.
Compared with ORB-SLAM?2, our method also achieves
comparable efficiency while using the Superpoint features.

8.3. KITTI

Besides the indoor scenes, we also experiment on KITTI
benchmark to test the loop closure capability. Out of five
experimented sequences, ‘seq03’ and ‘seql10’ have no loop
closure point, ’seq07’ and ‘seq09’ have one loop closure
point, and ‘seq05’ has three loop closure points, which is the
hardest case. Absolute Trajectory Error (ATE) and running
time are shown in Table 2. Our method achieves the best re-
sult on ‘seq03’ and ‘seq05’ and ‘seq09’, and contains a mi-
nor gap to the best result on ‘seq07’ and ‘seq10’. As shown
in Figure 5, ORB-SLAM?2 cannot perform the correct loop
closure on ‘seq09’ while our method successfully detects
and close the loop. Comparison of 3D structure is shown
in 6, our method can reconstruct more details than ORB-
SLAM?2. Furthermore, when compared with COLMAP
video mode, our method performs better in terms of both
accuracy on ATE and efficiency in most cases, which runs
10-15x faster.

8.4. Reconstruction Statistics

Following the COLMAP convention [ 1], we record the
mean number of observations per keyframe and mean track
length, and additionally, the keyframe ratio. The results are
shown in Figure 7. COLMAP achieves a 100% keyframe
ratio as it treats every image as a keyframe, while ORB-
SLAM?2 and our method achieve a much lower keyframe
ratio. For the mean number of observations, COLMAP and
ORBSLAM?2 extract significantly more features than ours
and therefore have more 3D map points to track. In terms
of mean track length, COLMAP achieves the highest length
since COLMAP does not drop non-keyframe, and the over-
lapping between consecutive images becomes larger.
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Figure 7: Reconstruction statistics with keyframe ration,
mean observations per image, and mean track length.

8.5. Ablation Study

Components. We perform an ablation study on KITTI
sequence 05 to study the function of each module in our
pipeline. With only the initialization plus PnP to track
the new keyframes, the 3D structures of the whole scene
quickly collapse after the first turn, as shown in Figure 8
(a). By adding local BA and global BA, the 3D points do
not collapse to the same position, and the visual odometry
can track the whole sequence while suffering from the ac-
cumulative scale drift. (c) takes additional local map into
account, and the new keyframe will be dragged to the previ-
ous map if sharing the covisibility with the old keyframes.
However, such an operation will easily break the continuity
of the trajectory. (d) introduces the loop closure on Sim(3)
space to solve the scale drift problem and close the loop.

(c) (d)
Figure 8: Ablation study of different components on KITTI
Seq05. (a) PnP only, (b) PnP + BA, (c) PnP + BA + Local
Map Tracking, and (d) PnP + BA + Local Map Tracking +
Loop Closure.

SE(3) vs Sim(3) for Loop Closure. We evaluate two
constraints of loop closure on either SE(3) space or Sim(3)
space. For the SE(3), it only optimizes the pose on SE(3)



frl/desk fr1/desk2 frl/room frl/plant fr2/desk
rmse time rmse time rmse time rmse time rmse time

COLMAP 0044 26 0112 31 X 69 0.061 200 0.059 1275
ORBSLAM2 0.040 1 X 1 X 2 0119 2 0.030 2
Ours (superglue) 0.057 8 0.109 9 0193 21 0.042 25 0.037 99

Method

Table 1: ATE w.r.t. full transformation (unit-less) and processing time (min) on TUM-RGBD.
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Figure 3: Trajectory visualization on TUM-RGBD

Figure 4: 3D structure visualization on TUM-RGBD fr2/desk (Left: COLMAP, middle: ORB¥SLAM2, right: Ours)

Method seq03. serS' seq07. seq09 ' seql 0'
rmse time rmse time rmse time rmse time rmse time
COLMAP X 153 X 1178 5.198 216 5.700 263 6.150 189

ORBSLAM?2 1.027 2 4.338 5 3.726 2 53.635 3 6.138 3
Ours (superglue) 0.648 10 3.117 83 3775 12 4.494 22 6.166 18

Table 2: ATE w.r.t. full transformation (unit-less) and processing time (min) on KITTI.

with 6 DoF while Sim(3) adds an additional scaling factor
than SE(3) and contains 7 DoF, assuming that there may
be scale drift. We show both quantitative and qualitative
results in Figure 9 and Table 3. As shown in the table, .
performing PGO on Sim(3) significantly improves the re-
sults, which demonstrates the effectiveness of solving the
scale drift problem. Performing SE(3) optimization can also
close the loop but drag the whole trajectory to an incorrect
shape. Also, for SE(3) the cost in PGO can only be mini-

(a) Seq05 (b) Seq07
mized to a certain degree and stuck at local minima while Figure 9: Ablation study of loop closure constraints on
using Sim(3) the cost always converges to zero very quickly. KITTI Seq05.
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(a) Seq05

(b) Seq07
Figure 5: Trajectory visualization on KITTI
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Figure 6: 3D structure visualization on KITTIO7 (Left: COLMAP, middle: ORB-SLAM?2, right: Ours)

Loop Closure  Seq05 Seq07  Seq09
Ours-SE(3)  12.161 9.065 20.450
Ours-Sim(3)  3.117  3.775 4.494

Table 3: ATE w.r.t. full transformation (unit-less) on KITTI
for loop closure constraints.

Time We analyze the time of different parts of our sys-
tem on Kkitti sequence 07 as in Figure 10. Inside check
keyframe part, 33% is spent on extracing Superpoint, 47.8%
on SuperGlue, and the rest on NetVLAD. We do a global
BA every 20 keyframes. Note that for longer sequence,
the ratio of time took by global BA will grow, and users
can persue higher speed by setting the global BA frequency
smaller.

9. Work Distribution

Our distributions are listed as follows:
e Kexin: local/global BA, reproduction of ORB-SLAM?2
e Weirong: framework, visualization, BA, experiments
e Yidan: keyframe selection, experiments
e Yifei: initialization, local/global BA, loop closing, profil-
ing and speed optimization.

10. Conclusion

In this project, we develop COLAM, an offline python
SLAM based on COLMAP, which achieves comparable

Time Distribution
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Figure 10: Runtime distribution on KITTI Seq07.

reconstruction performance with fewer track failures and
a much shorter runtime compared with COLMAP and
ORBSLAM. The system is built taking the robustness of
COLMAP, the flexibility of Hloc, and the efficiency of
ORBSLAM. Starting with COLMAP pipeline, we intro-
duce the keyframe selection, covisibility graph, and loop
closure to improve the speed and alleviate scale drift of the
vanilla COLMAP. Extensive experiments are conducted on
standard SLAM benchmarks, including TUM-RGBD (in-
door) and KITTI (outdoor) datasets. In addition, we per-
form an ablation study on different components and differ-
ent constraints for loop closure.
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