

COLAM - An Offline Python SLAM Using COLMAP

Weirong Chen, Yifei Liu, Kexin Shi, Yidan Gao Supervised by Sarlin Paul-Edouard

Motivation & Goals

COLMAP[2] is a powerful toolbox for Structure-from-Motion, which estimates camera poses and 3D structures from a set of unordered images. Compared with online SLAM systems:

✓ Robust by learning powerful local features and camera parameters optimization.

- **X** Slow on videos since it needs to match images pairs beforehand.
- **✗** Inefficient due to global bundle adjustment.

Our goal for this project is to:

- Leverage both advantages from COLMAP and ORB-SLAM[1] to build a powerful, accurate, efficient offline SLAM.
- Design simple, extendable and user-friendly python APIs.

Quantitative Results

Dataset	COLMAP	ORB-SLAM	Ours
kitti sequence05	> 1 day	5.441	59.130
$rgbd_freiburg1_desk$	29.367	0.410	7.750
$rgbd_freiburg2_desk$	> 1 day	4.962	64.304

Table 1:Reconstruction time comparison (min).

	Dataset	max	mean	median	min	rmse	sse	std
kit	ti sequence05	0.858	0.459	0.468	0.175	0.491	191.058	0.174
rgbd_	_freiburg1_desk	0.549	0.174	0.135	0.029	0.209	3.572	0.116

• Benchmark on existing SLAM datasets and online videos.

Pipeline

Figure 1:COLAM pipeline.

rgbd_freiburg2_desk 0.194 0.072 0.066 0.008 0.087 1.264 0.047

Table 2: Absolute pose error w.r.t translation part (m)

Qualitative Results

Figure 3:Evaluation on rgbd_freiburg1_desk.

Figure 4:Evaluation on rgbd_freiburg2_desk.

Figure 2: Visualization for tracking.

Key Insights

Major Tools:

- Hloc, PyCOLMAP, PyCeres, Open3D, NetVLAD.
- Multiple Criteria for Keyframe Selection:
- Optical flow, ratio and quality of matched features, number of visible 3D points, time duration from the last keyframe.
- Improved ability to track features of variant depths. Local and Global Bundle Adjustment:
- Refine camera poses and 3D points using the covisibility graph of the current frame.
- More robust against track failure and scale drift.

Loop Closure:

- Use NetVLAD to extract global features and apply Pose Graph Optimization when a loop is detected.
- Better reconstruction quality and trajectory completion.

Figure 5: Evaluation on Kitti sequence 05.

Figure 6: Ablation study on Kitti sequence05

References

[1] M. J. M. M. Mur-Artal, Raúl and J. D. Tardós. ORB-SLAM: a versatile and accurate monocular SLAM system. *IEEE Transactions on Robotics*, 31(5):1147–1163, 2015. doi: 10.1109/TRO.2015.2463671.

[2] J. L. Schönberger and J.-M. Frahm. Structure-from-motion revisited. In Conference on Computer Vision and Pattern Recognition (CVPR), 2016.